

Welcome to WeatherDB’s documentation!

Contents:

	 Introduction
	Install

	Get started

	How-to install python

	Quickstart
	download
	single station

	multiple stations

	create timeseries files

	get meta information

	Method
	downloading the data

	quality check
	Temperature and Evapotranspiration

	Precipitation
	daily sum is zero

	consecutive equal values

	gap filling

	Richter correction

	Sources

	 API reference
	weatherDB
	station
	StationN
	StationN
	StationN.corr()

	StationN.count_holes()

	StationN.download_raw()

	StationN.fillup()

	StationN.get_adj()

	StationN.get_coef()

	StationN.get_corr()

	StationN.get_df()

	StationN.get_dist()

	StationN.get_filled()

	StationN.get_filled_period()

	StationN.get_geom()

	StationN.get_geom_shp()

	StationN.get_horizon()

	StationN.get_last_imp_period()

	StationN.get_ma()

	StationN.get_max_period()

	StationN.get_meta()

	StationN.get_meta_explanation()

	StationN.get_multi_annual()

	StationN.get_name()

	StationN.get_neighboor_stids()

	StationN.get_period_meta()

	StationN.get_qc()

	StationN.get_qn()

	StationN.get_raster_value()

	StationN.get_raw()

	StationN.get_richter_class()

	StationN.get_zipfiles()

	StationN.is_last_imp_done()

	StationN.is_real()

	StationN.is_virtual()

	StationN.isin_db()

	StationN.isin_ma()

	StationN.isin_meta()

	StationN.last_imp_corr()

	StationN.last_imp_fillup()

	StationN.last_imp_qc()

	StationN.last_imp_quality_check()

	StationN.last_imp_richter_correct()

	StationN.plot()

	StationN.quality_check()

	StationN.richter_correct()

	StationN.update_horizon()

	StationN.update_ma()

	StationN.update_period_meta()

	StationN.update_raw()

	StationN.update_richter_class()

	StationT
	StationT
	StationT.count_holes()

	StationT.download_raw()

	StationT.fillup()

	StationT.get_adj()

	StationT.get_coef()

	StationT.get_df()

	StationT.get_dist()

	StationT.get_filled()

	StationT.get_filled_period()

	StationT.get_geom()

	StationT.get_geom_shp()

	StationT.get_last_imp_period()

	StationT.get_ma()

	StationT.get_max_period()

	StationT.get_meta()

	StationT.get_meta_explanation()

	StationT.get_multi_annual()

	StationT.get_name()

	StationT.get_neighboor_stids()

	StationT.get_period_meta()

	StationT.get_qc()

	StationT.get_raster_value()

	StationT.get_raw()

	StationT.get_zipfiles()

	StationT.is_last_imp_done()

	StationT.is_real()

	StationT.is_virtual()

	StationT.isin_db()

	StationT.isin_ma()

	StationT.isin_meta()

	StationT.isin_meta_n()

	StationT.last_imp_fillup()

	StationT.last_imp_qc()

	StationT.last_imp_quality_check()

	StationT.plot()

	StationT.quality_check()

	StationT.update_ma()

	StationT.update_period_meta()

	StationT.update_raw()

	StationET
	StationET
	StationET.count_holes()

	StationET.download_raw()

	StationET.fillup()

	StationET.get_adj()

	StationET.get_coef()

	StationET.get_df()

	StationET.get_dist()

	StationET.get_filled()

	StationET.get_filled_period()

	StationET.get_geom()

	StationET.get_geom_shp()

	StationET.get_last_imp_period()

	StationET.get_ma()

	StationET.get_max_period()

	StationET.get_meta()

	StationET.get_meta_explanation()

	StationET.get_multi_annual()

	StationET.get_name()

	StationET.get_neighboor_stids()

	StationET.get_period_meta()

	StationET.get_qc()

	StationET.get_raster_value()

	StationET.get_raw()

	StationET.get_zipfiles()

	StationET.is_last_imp_done()

	StationET.is_real()

	StationET.is_virtual()

	StationET.isin_db()

	StationET.isin_ma()

	StationET.isin_meta()

	StationET.isin_meta_n()

	StationET.last_imp_fillup()

	StationET.last_imp_qc()

	StationET.last_imp_quality_check()

	StationET.plot()

	StationET.quality_check()

	StationET.update_ma()

	StationET.update_period_meta()

	StationET.update_raw()

	StationND

	GroupStation
	GroupStation
	GroupStation.create_roger_ts()

	GroupStation.create_ts()

	GroupStation.get_available_paras()

	GroupStation.get_df()

	GroupStation.get_filled_period()

	GroupStation.get_geom()

	GroupStation.get_max_period()

	GroupStation.get_meta()

	GroupStation.get_meta_explanation()

	GroupStation.get_name()

	StationBase…
	StationBase
	StationBase.count_holes()

	StationBase.download_raw()

	StationBase.fillup()

	StationBase.get_adj()

	StationBase.get_coef()

	StationBase.get_df()

	StationBase.get_dist()

	StationBase.get_filled()

	StationBase.get_filled_period()

	StationBase.get_geom()

	StationBase.get_geom_shp()

	StationBase.get_last_imp_period()

	StationBase.get_ma()

	StationBase.get_max_period()

	StationBase.get_meta()

	StationBase.get_meta_explanation()

	StationBase.get_multi_annual()

	StationBase.get_name()

	StationBase.get_neighboor_stids()

	StationBase.get_period_meta()

	StationBase.get_qc()

	StationBase.get_raster_value()

	StationBase.get_raw()

	StationBase.get_zipfiles()

	StationBase.is_last_imp_done()

	StationBase.is_real()

	StationBase.is_virtual()

	StationBase.isin_db()

	StationBase.isin_ma()

	StationBase.isin_meta()

	StationBase.last_imp_fillup()

	StationBase.last_imp_qc()

	StationBase.last_imp_quality_check()

	StationBase.plot()

	StationBase.quality_check()

	StationBase.update_ma()

	StationBase.update_period_meta()

	StationBase.update_raw()

	StationNBase
	StationNBase.count_holes()

	StationNBase.download_raw()

	StationNBase.fillup()

	StationNBase.get_adj()

	StationNBase.get_coef()

	StationNBase.get_df()

	StationNBase.get_dist()

	StationNBase.get_filled()

	StationNBase.get_filled_period()

	StationNBase.get_geom()

	StationNBase.get_geom_shp()

	StationNBase.get_last_imp_period()

	StationNBase.get_ma()

	StationNBase.get_max_period()

	StationNBase.get_meta()

	StationNBase.get_meta_explanation()

	StationNBase.get_multi_annual()

	StationNBase.get_name()

	StationNBase.get_neighboor_stids()

	StationNBase.get_period_meta()

	StationNBase.get_qc()

	StationNBase.get_raster_value()

	StationNBase.get_raw()

	StationNBase.get_zipfiles()

	StationNBase.is_last_imp_done()

	StationNBase.is_real()

	StationNBase.is_virtual()

	StationNBase.isin_db()

	StationNBase.isin_ma()

	StationNBase.isin_meta()

	StationNBase.last_imp_fillup()

	StationNBase.last_imp_qc()

	StationNBase.last_imp_quality_check()

	StationNBase.plot()

	StationNBase.quality_check()

	StationNBase.update_ma()

	StationNBase.update_period_meta()

	StationNBase.update_raw()

	StationCanVirtualBase
	StationCanVirtualBase.count_holes()

	StationCanVirtualBase.download_raw()

	StationCanVirtualBase.fillup()

	StationCanVirtualBase.get_adj()

	StationCanVirtualBase.get_coef()

	StationCanVirtualBase.get_df()

	StationCanVirtualBase.get_dist()

	StationCanVirtualBase.get_filled()

	StationCanVirtualBase.get_filled_period()

	StationCanVirtualBase.get_geom()

	StationCanVirtualBase.get_geom_shp()

	StationCanVirtualBase.get_last_imp_period()

	StationCanVirtualBase.get_ma()

	StationCanVirtualBase.get_max_period()

	StationCanVirtualBase.get_meta()

	StationCanVirtualBase.get_meta_explanation()

	StationCanVirtualBase.get_multi_annual()

	StationCanVirtualBase.get_name()

	StationCanVirtualBase.get_neighboor_stids()

	StationCanVirtualBase.get_period_meta()

	StationCanVirtualBase.get_qc()

	StationCanVirtualBase.get_raster_value()

	StationCanVirtualBase.get_raw()

	StationCanVirtualBase.get_zipfiles()

	StationCanVirtualBase.is_last_imp_done()

	StationCanVirtualBase.is_real()

	StationCanVirtualBase.is_virtual()

	StationCanVirtualBase.isin_db()

	StationCanVirtualBase.isin_ma()

	StationCanVirtualBase.isin_meta()

	StationCanVirtualBase.isin_meta_n()

	StationCanVirtualBase.last_imp_fillup()

	StationCanVirtualBase.last_imp_qc()

	StationCanVirtualBase.last_imp_quality_check()

	StationCanVirtualBase.plot()

	StationCanVirtualBase.quality_check()

	StationCanVirtualBase.update_ma()

	StationCanVirtualBase.update_period_meta()

	StationCanVirtualBase.update_raw()

	StationTETBase
	StationTETBase.count_holes()

	StationTETBase.download_raw()

	StationTETBase.fillup()

	StationTETBase.get_adj()

	StationTETBase.get_coef()

	StationTETBase.get_df()

	StationTETBase.get_dist()

	StationTETBase.get_filled()

	StationTETBase.get_filled_period()

	StationTETBase.get_geom()

	StationTETBase.get_geom_shp()

	StationTETBase.get_last_imp_period()

	StationTETBase.get_ma()

	StationTETBase.get_max_period()

	StationTETBase.get_meta()

	StationTETBase.get_meta_explanation()

	StationTETBase.get_multi_annual()

	StationTETBase.get_name()

	StationTETBase.get_neighboor_stids()

	StationTETBase.get_period_meta()

	StationTETBase.get_qc()

	StationTETBase.get_raster_value()

	StationTETBase.get_raw()

	StationTETBase.get_zipfiles()

	StationTETBase.is_last_imp_done()

	StationTETBase.is_real()

	StationTETBase.is_virtual()

	StationTETBase.isin_db()

	StationTETBase.isin_ma()

	StationTETBase.isin_meta()

	StationTETBase.isin_meta_n()

	StationTETBase.last_imp_fillup()

	StationTETBase.last_imp_qc()

	StationTETBase.last_imp_quality_check()

	StationTETBase.plot()

	StationTETBase.quality_check()

	StationTETBase.update_ma()

	StationTETBase.update_period_meta()

	StationTETBase.update_raw()

	stations
	StationsN
	StationsN
	StationsN.count_holes()

	StationsN.download_meta()

	StationsN.fillup()

	StationsN.get_df()

	StationsN.get_meta()

	StationsN.get_meta_explanation()

	StationsN.get_stations()

	StationsN.last_imp_corr()

	StationsN.last_imp_fillup()

	StationsN.last_imp_quality_check()

	StationsN.quality_check()

	StationsN.richter_correct()

	StationsN.update()

	StationsN.update_ma()

	StationsN.update_meta()

	StationsN.update_period_meta()

	StationsN.update_raw()

	StationsN.update_richter_class()

	StationsT
	StationsT
	StationsT.count_holes()

	StationsT.download_meta()

	StationsT.fillup()

	StationsT.get_df()

	StationsT.get_meta()

	StationsT.get_meta_explanation()

	StationsT.get_stations()

	StationsT.last_imp_fillup()

	StationsT.last_imp_quality_check()

	StationsT.quality_check()

	StationsT.update()

	StationsT.update_ma()

	StationsT.update_meta()

	StationsT.update_period_meta()

	StationsT.update_raw()

	StationsET
	StationsET
	StationsET.count_holes()

	StationsET.download_meta()

	StationsET.fillup()

	StationsET.get_df()

	StationsET.get_meta()

	StationsET.get_meta_explanation()

	StationsET.get_stations()

	StationsET.last_imp_fillup()

	StationsET.last_imp_quality_check()

	StationsET.quality_check()

	StationsET.update()

	StationsET.update_ma()

	StationsET.update_meta()

	StationsET.update_period_meta()

	StationsET.update_raw()

	StationsND
	StationsND
	StationsND.count_holes()

	StationsND.download_meta()

	StationsND.fillup()

	StationsND.get_df()

	StationsND.get_meta()

	StationsND.get_meta_explanation()

	StationsND.get_stations()

	StationsND.last_imp_fillup()

	StationsND.last_imp_quality_check()

	StationsND.quality_check()

	StationsND.update()

	StationsND.update_ma()

	StationsND.update_meta()

	StationsND.update_period_meta()

	StationsND.update_raw()

	GroupStations
	GroupStations
	GroupStations.create_roger_ts()

	GroupStations.create_ts()

	GroupStations.get_group_stations()

	GroupStations.get_meta()

	GroupStations.get_meta_explanation()

	GroupStations.get_para_stations()

	GroupStations.get_valid_stids()

	StationsBase…
	StationsBase
	StationsBase.count_holes()

	StationsBase.download_meta()

	StationsBase.fillup()

	StationsBase.get_df()

	StationsBase.get_meta()

	StationsBase.get_meta_explanation()

	StationsBase.get_stations()

	StationsBase.last_imp_fillup()

	StationsBase.last_imp_quality_check()

	StationsBase.quality_check()

	StationsBase.update()

	StationsBase.update_ma()

	StationsBase.update_meta()

	StationsBase.update_period_meta()

	StationsBase.update_raw()

	StationsTETBase
	StationsTETBase.count_holes()

	StationsTETBase.download_meta()

	StationsTETBase.fillup()

	StationsTETBase.get_df()

	StationsTETBase.get_meta()

	StationsTETBase.get_meta_explanation()

	StationsTETBase.get_stations()

	StationsTETBase.last_imp_fillup()

	StationsTETBase.last_imp_quality_check()

	StationsTETBase.quality_check()

	StationsTETBase.update()

	StationsTETBase.update_ma()

	StationsTETBase.update_meta()

	StationsTETBase.update_period_meta()

	StationsTETBase.update_raw()

	broker
	Broker
	Broker
	Broker.check_is_broker_active()

	Broker.fillup()

	Broker.get_db_version()

	Broker.get_is_broker_active()

	Broker.get_setting()

	Broker.initiate_db()

	Broker.last_imp_corr()

	Broker.last_imp_fillup()

	Broker.last_imp_quality_check()

	Broker.quality_check()

	Broker.richter_correct()

	Broker.set_db_version()

	Broker.set_is_broker_active()

	Broker.set_setting()

	Broker.update_db()

	Broker.update_ma()

	Broker.update_meta()

	Broker.update_period_meta()

	Broker.update_raw()

	Broker.vacuum()

	Subpackages
	lib package
	utils
	TimestampPeriod

	get_cdc_file_list()

	get_ftp_file_list()

	max_fun
	import_DWD

	Changelog
	Version 0.0.40

	Version 0.0.39

	Version 0.0.38

	Version 0.0.37

	Version 0.0.36

	Version 0.0.35

	Version 0.0.34

	Version 0.0.33

	Version 0.0.32

	Version 0.0.31

	Version 0.0.30

	Version 0.0.29

	Version 0.0.28

	Version 0.0.27

	Version 0.0.26

	Version 0.0.25

	Version 0.0.24

	Version 0.0.23

	Version 0.0.22

	Version 0.0.21

	Version 0.0.20

	Version 0.0.19

	Version 0.0.18

	Version 0.0.17

	Version 0.0.16

	Version 0.0.15

	Version 0.0.14

	Version 0.0.13

	Version 0.0.12

	Version 0.0.11

	Version 0.0.10

	Version 0.0.9

	Version 0.0.8

	Version 0.0.7

	Version 0.0.6

	Version 0.0.5

	Version 0.0.4

	Version 0.0.3

Indices and tables

	Index

	Module Index

	Search Page

WeatherDB - module

author: [image: Max Schmit]

[image: Documentation Status] [https://weatherdb.readthedocs.io/en/latest/?badge=latest]

The weather-DB module offers an API to interact with the automatically filled weather Database.

Depending on the Database user privileges you can use more or less methods of the classes.

There are 3 different sub modules with their corresponding classes.

	station:
Has a class for every type of station. E.g. PrecipitationStation (or StationN).
One object represents one Station with one parameter.
This object can get used to get the corresponding timeserie.
There is also a GroupStation class that groups the three parameters precipitation, temperature and evapotranspiration together for one station. If one parameter is not available this one won’t get grouped.

	stations:
Is a grouping class for all the stations of one measurement parameter. E.G. PrecipitationStations (or StationsN).
Can get used to do actions on all the stations.

	broker:
This submodule has only one class Broker. This one is used to do actions on all the stations together. Mainly only used for updating the DB.

Install

To install the package use PIP to install the Github repository:

Or to upgrade use:

Get started

To get started you need to enter the credentials to access the Database. If this is an account with read only access, than only those method’s, that read data from the Database are available.
Enter those credentials in the secretSettings_weatherDB.py file. An example secretSettings_weatherDB.py file is in the source directory (see secretSettings_weatherDB_example.py)

If you use the database at the hydrology department of Freiburg, please go to the weather.hydro.intra.uni-freiburg.de [http://weather.hydro.intra.uni-freiburg.de]. There you can create yourself an account and then download your login secretSettings file from your profile page, next to the “API Password”.

The secretSettings_weatherDB.py file needs to be placed either:

	in a parent folder of the package (e.g. in the main folder of your virtual environment folder)

	some other directory that is in the PYTHONPATH environment variable. (You can also create a new directory and add it to the PATH environment)

	in the package source folder (e.g. ../path_to_venv/Lib/site-packages/weatherDB) !This might not be the best method, because an upgrade of the package could delete the file again!

How-to install python

To use this package you obviously need Python with several packages installed.

The easiest way to install python is by installing Anaconda [https://www.anaconda.com/products/distribution].

After the installation you should create yourself a virtual environment. This is basically a folder with all your packages installed and some definition files to set the appropriate environment variables…
To do so use (in Anaconda Terminal):

Afterwards you need to activate your environment and then install the requirements:

Quick-start

After installing and setting up the secretSettings_weatherDB.py file you are ready to use the package.
This page should show you the basic usage of the package.

The package is divided in 2 main submodules:

	weatherDB.station:
This module has a class for every type of station. E.g. StationN (or StationN).
One object represents one Station with one parameter.
This object can get used to get the corresponding timeserie.
There is also a StationGroup class that groups the three parameters precipitation, temperature and evapotranspiration together for one station.

 Method

Method

Behind this package/website is a PostGreSQL-database. This database is build and updated with the same package, as for downloading the data. The only difference is, that the given connection in the secretSettings file needs to have write permissions for the database.
Therefor everyone can look into the code to find out exactly how the database creation works. But as an overview this page will give basic explanations of the processes behind it.

The timeseries for Temperature, Evapotranspiration and Precipitation are going through a 3-4 step process.The result of every process is saved and can get downloaded, with the corresponding abbreviation:

	downloading the raw data –> “raw”

	quality check the data –> “qc”

	fillup the data –> “filled”

	richter correct the values –> “corr”

In the following chapters the processes will get explained furthermore.

downloading the data

The raw data is downloaded from the DWD-CDC server [https://opendata.dwd.de/climate_environment/CDC/]. The timeseries are downloaded and saved from the 1.1.1994 on. If there is historical data available for a measurement, they are preferred over recent values, because they are already quality checked a bit. The Temperature (T) and potential Evapotranspiration (ET) is downloaded on daily resolution. Where as the Precipitation (N) is downloaded as 10 minute and daily values, but only the 10 minute values are the basis for the downloads.

Table 1: The downloaded raw data, resolution and their source

	parameter

	resolution

	source

	Temperature

	daily

		DWD Climate Data Center (CDC): Historical daily station observations (temperature, pressure, precipitation, sunshine duration, etc.) for Germany, version v21.3, 2021, online available [https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/]

 weatherDB

weatherDB

	weatherDB
	station
	StationN
	StationN
	StationN.corr()

	StationN.count_holes()

	StationN.download_raw()

	StationN.fillup()

	StationN.get_adj()

	StationN.get_coef()

	StationN.get_corr()

	StationN.get_df()

	StationN.get_dist()

	StationN.get_filled()

	StationN.get_filled_period()

	StationN.get_geom()

	StationN.get_geom_shp()

	StationN.get_horizon()

	StationN.get_last_imp_period()

	StationN.get_ma()

	StationN.get_max_period()

	StationN.get_meta()

	StationN.get_meta_explanation()

	StationN.get_multi_annual()

	StationN.get_name()

	StationN.get_neighboor_stids()

	StationN.get_period_meta()

	StationN.get_qc()

	StationN.get_qn()

	StationN.get_raster_value()

	StationN.get_raw()

	StationN.get_richter_class()

	StationN.get_zipfiles()

	StationN.is_last_imp_done()

	StationN.is_real()

	StationN.is_virtual()

	StationN.isin_db()

	StationN.isin_ma()

	StationN.isin_meta()

	StationN.last_imp_corr()

	StationN.last_imp_fillup()

	StationN.last_imp_qc()

	StationN.last_imp_quality_check()

	StationN.last_imp_richter_correct()

	StationN.plot()

	StationN.quality_check()

	StationN.richter_correct()

	StationN.update_horizon()

	StationN.update_ma()

	StationN.update_period_meta()

	StationN.update_raw()

	StationN.update_richter_class()

	StationT
	StationT
	StationT.count_holes()

	StationT.download_raw()

	StationT.fillup()

	StationT.get_adj()

	StationT.get_coef()

	StationT.get_df()

	StationT.get_dist()

	StationT.get_filled()

	StationT.get_filled_period()

	StationT.get_geom()

	StationT.get_geom_shp()

	StationT.get_last_imp_period()

	StationT.get_ma()

	StationT.get_max_period()

	StationT.get_meta()

	StationT.get_meta_explanation()

	StationT.get_multi_annual()

	StationT.get_name()

	StationT.get_neighboor_stids()

	StationT.get_period_meta()

	StationT.get_qc()

	StationT.get_raster_value()

	StationT.get_raw()

	StationT.get_zipfiles()

	StationT.is_last_imp_done()

	StationT.is_real()

	StationT.is_virtual()

	StationT.isin_db()

	StationT.isin_ma()

	StationT.isin_meta()

	StationT.isin_meta_n()

	StationT.last_imp_fillup()

	StationT.last_imp_qc()

	StationT.last_imp_quality_check()

	StationT.plot()

	StationT.quality_check()

	StationT.update_ma()

	StationT.update_period_meta()

	StationT.update_raw()

	StationET
	StationET
	StationET.count_holes()

	StationET.download_raw()

	StationET.fillup()

	StationET.get_adj()

	StationET.get_coef()

	StationET.get_df()

	StationET.get_dist()

	StationET.get_filled()

	StationET.get_filled_period()

	StationET.get_geom()

	StationET.get_geom_shp()

	StationET.get_last_imp_period()

	StationET.get_ma()

	StationET.get_max_period()

	StationET.get_meta()

	StationET.get_meta_explanation()

	StationET.get_multi_annual()

	StationET.get_name()

	StationET.get_neighboor_stids()

	StationET.get_period_meta()

	StationET.get_qc()

	StationET.get_raster_value()

	StationET.get_raw()

	StationET.get_zipfiles()

	StationET.is_last_imp_done()

	StationET.is_real()

	StationET.is_virtual()

	StationET.isin_db()

	StationET.isin_ma()

	StationET.isin_meta()

	StationET.isin_meta_n()

	StationET.last_imp_fillup()

	StationET.last_imp_qc()

	StationET.last_imp_quality_check()

	StationET.plot()

	StationET.quality_check()

	StationET.update_ma()

	StationET.update_period_meta()

	StationET.update_raw()

	StationND

	GroupStation
	GroupStation
	GroupStation.create_roger_ts()

	GroupStation.create_ts()

	GroupStation.get_available_paras()

	GroupStation.get_df()

	GroupStation.get_filled_period()

	GroupStation.get_geom()

	GroupStation.get_max_period()

	GroupStation.get_meta()

	GroupStation.get_meta_explanation()

	GroupStation.get_name()

	StationBase…
	StationBase
	StationBase.count_holes()

	StationBase.download_raw()

	StationBase.fillup()

	StationBase.get_adj()

	StationBase.get_coef()

	StationBase.get_df()

	StationBase.get_dist()

	StationBase.get_filled()

	StationBase.get_filled_period()

	StationBase.get_geom()

	StationBase.get_geom_shp()

	StationBase.get_last_imp_period()

	StationBase.get_ma()

	StationBase.get_max_period()

	StationBase.get_meta()

	StationBase.get_meta_explanation()

	StationBase.get_multi_annual()

	StationBase.get_name()

	StationBase.get_neighboor_stids()

	StationBase.get_period_meta()

	StationBase.get_qc()

	StationBase.get_raster_value()

	StationBase.get_raw()

	StationBase.get_zipfiles()

	StationBase.is_last_imp_done()

	StationBase.is_real()

	StationBase.is_virtual()

	StationBase.isin_db()

	StationBase.isin_ma()

	StationBase.isin_meta()

	StationBase.last_imp_fillup()

	StationBase.last_imp_qc()

	StationBase.last_imp_quality_check()

	StationBase.plot()

	StationBase.quality_check()

	StationBase.update_ma()

	StationBase.update_period_meta()

	StationBase.update_raw()

	StationNBase
	StationNBase.count_holes()

	StationNBase.download_raw()

	StationNBase.fillup()

	StationNBase.get_adj()

	StationNBase.get_coef()

	StationNBase.get_df()

	StationNBase.get_dist()

	StationNBase.get_filled()

	StationNBase.get_filled_period()

	StationNBase.get_geom()

	StationNBase.get_geom_shp()

	StationNBase.get_last_imp_period()

	StationNBase.get_ma()

	StationNBase.get_max_period()

	StationNBase.get_meta()

	StationNBase.get_meta_explanation()

	StationNBase.get_multi_annual()

	StationNBase.get_name()

	StationNBase.get_neighboor_stids()

	StationNBase.get_period_meta()

	StationNBase.get_qc()

	StationNBase.get_raster_value()

	StationNBase.get_raw()

	StationNBase.get_zipfiles()

	StationNBase.is_last_imp_done()

	StationNBase.is_real()

	StationNBase.is_virtual()

	StationNBase.isin_db()

	StationNBase.isin_ma()

	StationNBase.isin_meta()

	StationNBase.last_imp_fillup()

	StationNBase.last_imp_qc()

	StationNBase.last_imp_quality_check()

	StationNBase.plot()

	StationNBase.quality_check()

	StationNBase.update_ma()

	StationNBase.update_period_meta()

	StationNBase.update_raw()

	StationCanVirtualBase
	StationCanVirtualBase.count_holes()

	StationCanVirtualBase.download_raw()

	StationCanVirtualBase.fillup()

	StationCanVirtualBase.get_adj()

	StationCanVirtualBase.get_coef()

	StationCanVirtualBase.get_df()

	StationCanVirtualBase.get_dist()

	StationCanVirtualBase.get_filled()

	StationCanVirtualBase.get_filled_period()

	StationCanVirtualBase.get_geom()

	StationCanVirtualBase.get_geom_shp()

	StationCanVirtualBase.get_last_imp_period()

	StationCanVirtualBase.get_ma()

	StationCanVirtualBase.get_max_period()

	StationCanVirtualBase.get_meta()

	StationCanVirtualBase.get_meta_explanation()

	StationCanVirtualBase.get_multi_annual()

	StationCanVirtualBase.get_name()

	StationCanVirtualBase.get_neighboor_stids()

	StationCanVirtualBase.get_period_meta()

	StationCanVirtualBase.get_qc()

	StationCanVirtualBase.get_raster_value()

	StationCanVirtualBase.get_raw()

	StationCanVirtualBase.get_zipfiles()

	StationCanVirtualBase.is_last_imp_done()

	StationCanVirtualBase.is_real()

	StationCanVirtualBase.is_virtual()

	StationCanVirtualBase.isin_db()

	StationCanVirtualBase.isin_ma()

	StationCanVirtualBase.isin_meta()

	StationCanVirtualBase.isin_meta_n()

	StationCanVirtualBase.last_imp_fillup()

	StationCanVirtualBase.last_imp_qc()

	StationCanVirtualBase.last_imp_quality_check()

	StationCanVirtualBase.plot()

	StationCanVirtualBase.quality_check()

	StationCanVirtualBase.update_ma()

	StationCanVirtualBase.update_period_meta()

	StationCanVirtualBase.update_raw()

	StationTETBase
	StationTETBase.count_holes()

	StationTETBase.download_raw()

	StationTETBase.fillup()

	StationTETBase.get_adj()

	StationTETBase.get_coef()

	StationTETBase.get_df()

	StationTETBase.get_dist()

	StationTETBase.get_filled()

	StationTETBase.get_filled_period()

	StationTETBase.get_geom()

	StationTETBase.get_geom_shp()

	StationTETBase.get_last_imp_period()

	StationTETBase.get_ma()

	StationTETBase.get_max_period()

	StationTETBase.get_meta()

	StationTETBase.get_meta_explanation()

	StationTETBase.get_multi_annual()

	StationTETBase.get_name()

	StationTETBase.get_neighboor_stids()

	StationTETBase.get_period_meta()

	StationTETBase.get_qc()

	StationTETBase.get_raster_value()

	StationTETBase.get_raw()

	StationTETBase.get_zipfiles()

	StationTETBase.is_last_imp_done()

	StationTETBase.is_real()

	StationTETBase.is_virtual()

	StationTETBase.isin_db()

	StationTETBase.isin_ma()

	StationTETBase.isin_meta()

	StationTETBase.isin_meta_n()

	StationTETBase.last_imp_fillup()

	StationTETBase.last_imp_qc()

	StationTETBase.last_imp_quality_check()

	StationTETBase.plot()

	StationTETBase.quality_check()

	StationTETBase.update_ma()

	StationTETBase.update_period_meta()

	StationTETBase.update_raw()

	stations
	StationsN
	StationsN
	StationsN.count_holes()

	StationsN.download_meta()

	StationsN.fillup()

	StationsN.get_df()

	StationsN.get_meta()

	StationsN.get_meta_explanation()

	StationsN.get_stations()

	StationsN.last_imp_corr()

	StationsN.last_imp_fillup()

	StationsN.last_imp_quality_check()

	StationsN.quality_check()

	StationsN.richter_correct()

	StationsN.update()

	StationsN.update_ma()

	StationsN.update_meta()

	StationsN.update_period_meta()

	StationsN.update_raw()

	StationsN.update_richter_class()

	StationsT
	StationsT
	StationsT.count_holes()

	StationsT.download_meta()

	StationsT.fillup()

	StationsT.get_df()

	StationsT.get_meta()

	StationsT.get_meta_explanation()

	StationsT.get_stations()

	StationsT.last_imp_fillup()

	StationsT.last_imp_quality_check()

	StationsT.quality_check()

	StationsT.update()

	StationsT.update_ma()

	StationsT.update_meta()

	StationsT.update_period_meta()

	StationsT.update_raw()

	StationsET
	StationsET
	StationsET.count_holes()

	StationsET.download_meta()

	StationsET.fillup()

	StationsET.get_df()

	StationsET.get_meta()

	StationsET.get_meta_explanation()

	StationsET.get_stations()

	StationsET.last_imp_fillup()

	StationsET.last_imp_quality_check()

	StationsET.quality_check()

	StationsET.update()

	StationsET.update_ma()

	StationsET.update_meta()

	StationsET.update_period_meta()

	StationsET.update_raw()

	StationsND
	StationsND
	StationsND.count_holes()

	StationsND.download_meta()

	StationsND.fillup()

	StationsND.get_df()

	StationsND.get_meta()

	StationsND.get_meta_explanation()

	StationsND.get_stations()

	StationsND.last_imp_fillup()

	StationsND.last_imp_quality_check()

	StationsND.quality_check()

	StationsND.update()

	StationsND.update_ma()

	StationsND.update_meta()

	StationsND.update_period_meta()

	StationsND.update_raw()

	GroupStations
	GroupStations
	GroupStations.create_roger_ts()

	GroupStations.create_ts()

	GroupStations.get_group_stations()

	GroupStations.get_meta()

	GroupStations.get_meta_explanation()

	GroupStations.get_para_stations()

	GroupStations.get_valid_stids()

	StationsBase…
	StationsBase
	StationsBase.count_holes()

	StationsBase.download_meta()

	StationsBase.fillup()

	StationsBase.get_df()

	StationsBase.get_meta()

	StationsBase.get_meta_explanation()

	StationsBase.get_stations()

	StationsBase.last_imp_fillup()

	StationsBase.last_imp_quality_check()

	StationsBase.quality_check()

	StationsBase.update()

	StationsBase.update_ma()

	StationsBase.update_meta()

	StationsBase.update_period_meta()

	StationsBase.update_raw()

	StationsTETBase
	StationsTETBase.count_holes()

	StationsTETBase.download_meta()

	StationsTETBase.fillup()

	StationsTETBase.get_df()

	StationsTETBase.get_meta()

	StationsTETBase.get_meta_explanation()

	StationsTETBase.get_stations()

	StationsTETBase.last_imp_fillup()

	StationsTETBase.last_imp_quality_check()

	StationsTETBase.quality_check()

	StationsTETBase.update()

	StationsTETBase.update_ma()

	StationsTETBase.update_meta()

	StationsTETBase.update_period_meta()

	StationsTETBase.update_raw()

	broker
	Broker
	Broker
	Broker.check_is_broker_active()

	Broker.fillup()

	Broker.get_db_version()

	Broker.get_is_broker_active()

	Broker.get_setting()

	Broker.initiate_db()

	Broker.last_imp_corr()

	Broker.last_imp_fillup()

	Broker.last_imp_quality_check()

	Broker.quality_check()

	Broker.richter_correct()

	Broker.set_db_version()

	Broker.set_is_broker_active()

	Broker.set_setting()

	Broker.update_db()

	Broker.update_ma()

	Broker.update_meta()

	Broker.update_period_meta()

	Broker.update_raw()

	Broker.vacuum()

	Subpackages
	lib package
	utils
	TimestampPeriod

	get_cdc_file_list()

	get_ftp_file_list()

	max_fun
	import_DWD

 weatherDB

weatherDB

	station
	StationN
	StationN
	StationN.corr()

	StationN.count_holes()

	StationN.download_raw()

	StationN.fillup()

	StationN.get_adj()

	StationN.get_coef()

	StationN.get_corr()

	StationN.get_df()

	StationN.get_dist()

	StationN.get_filled()

	StationN.get_filled_period()

	StationN.get_geom()

	StationN.get_geom_shp()

	StationN.get_horizon()

	StationN.get_last_imp_period()

	StationN.get_ma()

	StationN.get_max_period()

	StationN.get_meta()

	StationN.get_meta_explanation()

	StationN.get_multi_annual()

	StationN.get_name()

	StationN.get_neighboor_stids()

	StationN.get_period_meta()

	StationN.get_qc()

	StationN.get_qn()

	StationN.get_raster_value()

	StationN.get_raw()

	StationN.get_richter_class()

	StationN.get_zipfiles()

	StationN.is_last_imp_done()

	StationN.is_real()

	StationN.is_virtual()

	StationN.isin_db()

	StationN.isin_ma()

	StationN.isin_meta()

	StationN.last_imp_corr()

	StationN.last_imp_fillup()

	StationN.last_imp_qc()

	StationN.last_imp_quality_check()

	StationN.last_imp_richter_correct()

	StationN.plot()

	StationN.quality_check()

	StationN.richter_correct()

	StationN.update_horizon()

	StationN.update_ma()

	StationN.update_period_meta()

	StationN.update_raw()

	StationN.update_richter_class()

	StationT
	StationT
	StationT.count_holes()

	StationT.download_raw()

	StationT.fillup()

	StationT.get_adj()

	StationT.get_coef()

	StationT.get_df()

	StationT.get_dist()

	StationT.get_filled()

	StationT.get_filled_period()

	StationT.get_geom()

	StationT.get_geom_shp()

	StationT.get_last_imp_period()

	StationT.get_ma()

	StationT.get_max_period()

	StationT.get_meta()

	StationT.get_meta_explanation()

	StationT.get_multi_annual()

	StationT.get_name()

	StationT.get_neighboor_stids()

	StationT.get_period_meta()

	StationT.get_qc()

	StationT.get_raster_value()

	StationT.get_raw()

	StationT.get_zipfiles()

	StationT.is_last_imp_done()

	StationT.is_real()

	StationT.is_virtual()

	StationT.isin_db()

	StationT.isin_ma()

	StationT.isin_meta()

	StationT.isin_meta_n()

	StationT.last_imp_fillup()

	StationT.last_imp_qc()

	StationT.last_imp_quality_check()

	StationT.plot()

	StationT.quality_check()

	StationT.update_ma()

	StationT.update_period_meta()

	StationT.update_raw()

	StationET
	StationET
	StationET.count_holes()

	StationET.download_raw()

	StationET.fillup()

	StationET.get_adj()

	StationET.get_coef()

	StationET.get_df()

	StationET.get_dist()

	StationET.get_filled()

	StationET.get_filled_period()

	StationET.get_geom()

	StationET.get_geom_shp()

	StationET.get_last_imp_period()

	StationET.get_ma()

	StationET.get_max_period()

	StationET.get_meta()

	StationET.get_meta_explanation()

	StationET.get_multi_annual()

	StationET.get_name()

	StationET.get_neighboor_stids()

	StationET.get_period_meta()

	StationET.get_qc()

	StationET.get_raster_value()

	StationET.get_raw()

	StationET.get_zipfiles()

	StationET.is_last_imp_done()

	StationET.is_real()

	StationET.is_virtual()

	StationET.isin_db()

	StationET.isin_ma()

	StationET.isin_meta()

	StationET.isin_meta_n()

	StationET.last_imp_fillup()

	StationET.last_imp_qc()

	StationET.last_imp_quality_check()

	StationET.plot()

	StationET.quality_check()

	StationET.update_ma()

	StationET.update_period_meta()

	StationET.update_raw()

	StationND

	GroupStation
	GroupStation
	GroupStation.create_roger_ts()

	GroupStation.create_ts()

	GroupStation.get_available_paras()

	GroupStation.get_df()

	GroupStation.get_filled_period()

	GroupStation.get_geom()

	GroupStation.get_max_period()

	GroupStation.get_meta()

	GroupStation.get_meta_explanation()

	GroupStation.get_name()

	StationBase…
	StationBase
	StationBase.count_holes()

	StationBase.download_raw()

	StationBase.fillup()

	StationBase.get_adj()

	StationBase.get_coef()

	StationBase.get_df()

	StationBase.get_dist()

	StationBase.get_filled()

	StationBase.get_filled_period()

	StationBase.get_geom()

	StationBase.get_geom_shp()

	StationBase.get_last_imp_period()

	StationBase.get_ma()

	StationBase.get_max_period()

	StationBase.get_meta()

	StationBase.get_meta_explanation()

	StationBase.get_multi_annual()

	StationBase.get_name()

	StationBase.get_neighboor_stids()

	StationBase.get_period_meta()

	StationBase.get_qc()

	StationBase.get_raster_value()

	StationBase.get_raw()

	StationBase.get_zipfiles()

	StationBase.is_last_imp_done()

	StationBase.is_real()

	StationBase.is_virtual()

	StationBase.isin_db()

	StationBase.isin_ma()

	StationBase.isin_meta()

	StationBase.last_imp_fillup()

	StationBase.last_imp_qc()

	StationBase.last_imp_quality_check()

	StationBase.plot()

	StationBase.quality_check()

	StationBase.update_ma()

	StationBase.update_period_meta()

	StationBase.update_raw()

	StationNBase
	StationNBase.count_holes()

	StationNBase.download_raw()

	StationNBase.fillup()

	StationNBase.get_adj()

	StationNBase.get_coef()

	StationNBase.get_df()

	StationNBase.get_dist()

	StationNBase.get_filled()

	StationNBase.get_filled_period()

	StationNBase.get_geom()

	StationNBase.get_geom_shp()

	StationNBase.get_last_imp_period()

	StationNBase.get_ma()

	StationNBase.get_max_period()

	StationNBase.get_meta()

	StationNBase.get_meta_explanation()

	StationNBase.get_multi_annual()

	StationNBase.get_name()

	StationNBase.get_neighboor_stids()

	StationNBase.get_period_meta()

	StationNBase.get_qc()

	StationNBase.get_raster_value()

	StationNBase.get_raw()

	StationNBase.get_zipfiles()

	StationNBase.is_last_imp_done()

	StationNBase.is_real()

	StationNBase.is_virtual()

	StationNBase.isin_db()

	StationNBase.isin_ma()

	StationNBase.isin_meta()

	StationNBase.last_imp_fillup()

	StationNBase.last_imp_qc()

	StationNBase.last_imp_quality_check()

	StationNBase.plot()

	StationNBase.quality_check()

	StationNBase.update_ma()

	StationNBase.update_period_meta()

	StationNBase.update_raw()

	StationCanVirtualBase
	StationCanVirtualBase.count_holes()

	StationCanVirtualBase.download_raw()

	StationCanVirtualBase.fillup()

	StationCanVirtualBase.get_adj()

	StationCanVirtualBase.get_coef()

	StationCanVirtualBase.get_df()

	StationCanVirtualBase.get_dist()

	StationCanVirtualBase.get_filled()

	StationCanVirtualBase.get_filled_period()

	StationCanVirtualBase.get_geom()

	StationCanVirtualBase.get_geom_shp()

	StationCanVirtualBase.get_last_imp_period()

	StationCanVirtualBase.get_ma()

	StationCanVirtualBase.get_max_period()

	StationCanVirtualBase.get_meta()

	StationCanVirtualBase.get_meta_explanation()

	StationCanVirtualBase.get_multi_annual()

	StationCanVirtualBase.get_name()

	StationCanVirtualBase.get_neighboor_stids()

	StationCanVirtualBase.get_period_meta()

	StationCanVirtualBase.get_qc()

	StationCanVirtualBase.get_raster_value()

	StationCanVirtualBase.get_raw()

	StationCanVirtualBase.get_zipfiles()

	StationCanVirtualBase.is_last_imp_done()

	StationCanVirtualBase.is_real()

	StationCanVirtualBase.is_virtual()

	StationCanVirtualBase.isin_db()

	StationCanVirtualBase.isin_ma()

	StationCanVirtualBase.isin_meta()

	StationCanVirtualBase.isin_meta_n()

	StationCanVirtualBase.last_imp_fillup()

	StationCanVirtualBase.last_imp_qc()

	StationCanVirtualBase.last_imp_quality_check()

	StationCanVirtualBase.plot()

	StationCanVirtualBase.quality_check()

	StationCanVirtualBase.update_ma()

	StationCanVirtualBase.update_period_meta()

	StationCanVirtualBase.update_raw()

	StationTETBase
	StationTETBase.count_holes()

	StationTETBase.download_raw()

	StationTETBase.fillup()

	StationTETBase.get_adj()

	StationTETBase.get_coef()

	StationTETBase.get_df()

	StationTETBase.get_dist()

	StationTETBase.get_filled()

	StationTETBase.get_filled_period()

	StationTETBase.get_geom()

	StationTETBase.get_geom_shp()

	StationTETBase.get_last_imp_period()

	StationTETBase.get_ma()

	StationTETBase.get_max_period()

	StationTETBase.get_meta()

	StationTETBase.get_meta_explanation()

	StationTETBase.get_multi_annual()

	StationTETBase.get_name()

	StationTETBase.get_neighboor_stids()

	StationTETBase.get_period_meta()

	StationTETBase.get_qc()

	StationTETBase.get_raster_value()

	StationTETBase.get_raw()

	StationTETBase.get_zipfiles()

	StationTETBase.is_last_imp_done()

	StationTETBase.is_real()

	StationTETBase.is_virtual()

	StationTETBase.isin_db()

	StationTETBase.isin_ma()

	StationTETBase.isin_meta()

	StationTETBase.isin_meta_n()

	StationTETBase.last_imp_fillup()

	StationTETBase.last_imp_qc()

	StationTETBase.last_imp_quality_check()

	StationTETBase.plot()

	StationTETBase.quality_check()

	StationTETBase.update_ma()

	StationTETBase.update_period_meta()

	StationTETBase.update_raw()

	stations
	StationsN
	StationsN
	StationsN.count_holes()

	StationsN.download_meta()

	StationsN.fillup()

	StationsN.get_df()

	StationsN.get_meta()

	StationsN.get_meta_explanation()

	StationsN.get_stations()

	StationsN.last_imp_corr()

	StationsN.last_imp_fillup()

	StationsN.last_imp_quality_check()

	StationsN.quality_check()

	StationsN.richter_correct()

	StationsN.update()

	StationsN.update_ma()

	StationsN.update_meta()

	StationsN.update_period_meta()

	StationsN.update_raw()

	StationsN.update_richter_class()

	StationsT
	StationsT
	StationsT.count_holes()

	StationsT.download_meta()

	StationsT.fillup()

	StationsT.get_df()

	StationsT.get_meta()

	StationsT.get_meta_explanation()

	StationsT.get_stations()

	StationsT.last_imp_fillup()

	StationsT.last_imp_quality_check()

	StationsT.quality_check()

	StationsT.update()

	StationsT.update_ma()

	StationsT.update_meta()

	StationsT.update_period_meta()

	StationsT.update_raw()

	StationsET
	StationsET
	StationsET.count_holes()

	StationsET.download_meta()

	StationsET.fillup()

	StationsET.get_df()

	StationsET.get_meta()

	StationsET.get_meta_explanation()

	StationsET.get_stations()

	StationsET.last_imp_fillup()

	StationsET.last_imp_quality_check()

	StationsET.quality_check()

	StationsET.update()

	StationsET.update_ma()

	StationsET.update_meta()

	StationsET.update_period_meta()

	StationsET.update_raw()

	StationsND
	StationsND
	StationsND.count_holes()

	StationsND.download_meta()

	StationsND.fillup()

	StationsND.get_df()

	StationsND.get_meta()

	StationsND.get_meta_explanation()

	StationsND.get_stations()

	StationsND.last_imp_fillup()

	StationsND.last_imp_quality_check()

	StationsND.quality_check()

	StationsND.update()

	StationsND.update_ma()

	StationsND.update_meta()

	StationsND.update_period_meta()

	StationsND.update_raw()

	GroupStations
	GroupStations
	GroupStations.create_roger_ts()

	GroupStations.create_ts()

	GroupStations.get_group_stations()

	GroupStations.get_meta()

	GroupStations.get_meta_explanation()

	GroupStations.get_para_stations()

	GroupStations.get_valid_stids()

	StationsBase…
	StationsBase
	StationsBase.count_holes()

	StationsBase.download_meta()

	StationsBase.fillup()

	StationsBase.get_df()

	StationsBase.get_meta()

	StationsBase.get_meta_explanation()

	StationsBase.get_stations()

	StationsBase.last_imp_fillup()

	StationsBase.last_imp_quality_check()

	StationsBase.quality_check()

	StationsBase.update()

	StationsBase.update_ma()

	StationsBase.update_meta()

	StationsBase.update_period_meta()

	StationsBase.update_raw()

	StationsTETBase
	StationsTETBase.count_holes()

	StationsTETBase.download_meta()

	StationsTETBase.fillup()

	StationsTETBase.get_df()

	StationsTETBase.get_meta()

	StationsTETBase.get_meta_explanation()

	StationsTETBase.get_stations()

	StationsTETBase.last_imp_fillup()

	StationsTETBase.last_imp_quality_check()

	StationsTETBase.quality_check()

	StationsTETBase.update()

	StationsTETBase.update_ma()

	StationsTETBase.update_meta()

	StationsTETBase.update_period_meta()

	StationsTETBase.update_raw()

	broker
	Broker
	Broker
	Broker.check_is_broker_active()

	Broker.fillup()

	Broker.get_db_version()

	Broker.get_is_broker_active()

	Broker.get_setting()

	Broker.initiate_db()

	Broker.last_imp_corr()

	Broker.last_imp_fillup()

	Broker.last_imp_quality_check()

	Broker.quality_check()

	Broker.richter_correct()

	Broker.set_db_version()

	Broker.set_is_broker_active()

	Broker.set_setting()

	Broker.update_db()

	Broker.update_ma()

	Broker.update_meta()

	Broker.update_period_meta()

	Broker.update_raw()

	Broker.vacuum()

Subpackages

	lib package
	utils
	TimestampPeriod
	TimestampPeriod.contains()

	TimestampPeriod.copy()

	TimestampPeriod.expand_to_timestamp()

	TimestampPeriod.get_interval()

	TimestampPeriod.get_middle()

	TimestampPeriod.get_period()

	TimestampPeriod.get_sql_format_dict()

	TimestampPeriod.has_NaT()

	TimestampPeriod.has_only_NaT()

	TimestampPeriod.inside()

	TimestampPeriod.is_empty()

	TimestampPeriod.strftime()

	TimestampPeriod.union()

	get_cdc_file_list()

	get_ftp_file_list()

	max_fun
	import_DWD
	dwd_id_to_str()

	get_dwd_data()

	get_dwd_file()

	get_dwd_meta()

 station

station

StationN

	
class weatherDB.station.StationN(id, **kwargs)

	Bases: StationNBase

A class to work with and download 10 minutes precipitation data for one station.

Create a Station object.

	Parameters:

	
	id (int) – The stations ID.

	_skip_meta_check (bool, optional) – Should the check if the station is in the database meta file get skiped.
Pay attention, when skipping this, because it can lead to problems.
This is for computational reasons, because it makes the initialization faster.
Is used by the stations classes, because the only initialize objects that are in the meta table.
The default is False

	Raises:

	NotImplementedError – _description_

Public Methods:

	__init__(id, **kwargs)

	Create a Station object.

	update_horizon([skip_if_exist])

	Update the horizon angle (Horizontabschirmung) in the meta table.

	update_richter_class([skip_if_exist])

	Update the richter class in the meta table.

	richter_correct([period])

	Do the richter correction on the filled data for the given period.

	corr(*args, **kwargs)

	

	last_imp_richter_correct([_last_imp_period])

	Do the richter correction of the last import.

	last_imp_corr([_last_imp_period])

	A wrapper for last_imp_richter_correct().

	fillup([period])

	Fill up missing data with measurements from nearby stations.

	get_corr(**kwargs)

	

	get_qn(**kwargs)

	

	get_richter_class([update_if_fails])

	Get the richter class for this station.

	get_horizon()

	Get the value for the horizon angle.

Inherited from StationNBase

	get_adj(**kwargs)

	Get the adjusted timeserie.

Inherited from StationBase

	__init__(id[, _skip_meta_check])

	Create a Station object.

	isin_db()

	Check if Station is already in a timeseries table.

	isin_meta()

	Check if Station is already in the meta table.

	isin_ma()

	Check if Station is already in the multi annual table.

	is_virtual()

	Check if the station is a real station or only a virtual one.

	is_real()

	Check if the station is a real station or only a virtual one.

	is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	update_period_meta(kind)

	Update the time period in the meta file.

	update_ma([skip_if_exist, drop_when_error])

	Update the multi annual values in the stations_raster_values table.

	update_raw([only_new, ftp_file_list, remove_nas])

	Download data from CDC and upload to database.

	get_zipfiles([only_new, ftp_file_list])

	Get the zipfiles on the CDC server with the raw data.

	download_raw([only_new])

	Download the timeserie from the CDC Server.

	quality_check([period])

	Quality check the raw data for a given period.

	fillup([period])

	Fill up missing data with measurements from nearby stations.

	last_imp_quality_check()

	Do the quality check of the last import.

	last_imp_qc()

	

	last_imp_fillup([_last_imp_period])

	Do the gap filling of the last import.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos])

	Get Information from the meta table.

	get_geom([format, crs])

	Get the point geometry of the station.

	get_geom_shp([crs])

	Get the geometry of the station as a shapely Point object.

	get_name()

	

	count_holes([weeks, kind, period, ...])

	Count holes in timeseries depending on there length.

	get_period_meta(kind[, all])

	Get a specific period from the meta information table.

	get_filled_period(kind[, from_meta])

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

	get_max_period(kinds[, nas_allowed])

	Get the maximum available period for this stations timeseries.

	get_last_imp_period([all])

	Get the last imported Period for this Station.

	get_neighboor_stids([n, only_real, p_elev, ...])

	Get a list with Station Ids of the nearest neighboor stations.

	get_multi_annual()

	Get the multi annual value(s) for this station.

	get_ma()

	

	get_raster_value(raster)

	

	get_coef(other_stid[, in_db_unit])

	Get the regionalisation coefficients due to the height.

	get_df(kinds[, period, agg_to, nas_allowed, ...])

	Get a timeseries DataFrame from the database.

	get_raw(**kwargs)

	Get the raw timeserie.

	get_qc(**kwargs)

	Get the quality checked timeserie.

	get_dist([period])

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	get_filled([period, with_dist])

	Get the filled timeserie.

	get_adj(**kwargs)

	Get the adjusted timeserie.

	plot([period, kind, agg_to])

	Plot the data of this station.

	
corr(*args, **kwargs)

	

	
count_holes(weeks=[2, 4, 8, 12, 16, 20, 24], kind='qc', period=(None, None), between_meta_period=True, crop_period=False, **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	weeks (list, optional) – A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kind (str) – The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_period (bool, optional) – Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_period (bool, optional) – should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_raw(only_new=False)

	Download the timeserie from the CDC Server.

This function only returns the timeserie, but is not updating the database.

	Parameters:

	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is False.

	Returns:

	The Timeseries as a DataFrame with a Timestamp Index.

	Return type:

	pandas.DataFrame

	
fillup(period=(None, None), **kwargs)

	Fill up missing data with measurements from nearby stations.

	Parameters:

	
	period (util.TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to gap fill the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	kwargs (dict, optional) – Additional arguments for the fillup function.
e.g. p_elev to consider the elevation to select nearest stations. (only for T and ET)

	
get_adj(**kwargs)

	Get the adjusted timeserie.

The timeserie get adjusted to match the multi-annual value over the given period.
So the yearly variability is kept and only the whole period is adjusted.

The basis for the adjusted timeseries is the filled data and not the richter corrected data,
as the ma values are also uncorrected vallues.

	Returns:

	The adjusted timeserie with the timestamp as index.

	Return type:

	pd.DataFrame

	
get_coef(other_stid, in_db_unit=False)

	Get the regionalisation coefficients due to the height.

Those are the values from the dwd grid, HYRAS or REGNIE grids.

	Parameters:

	
	other_stid (int) – The Station Id of the other station from wich to regionalise for own station.

	in_db_unit (bool, optional) – Should the coefficients be returned in the unit as stored in the database?
This is only relevant for the temperature.
The default is False.

	Returns:

	A list of coefficients.
For T, ET and N-daily only the the yearly coefficient is returned.
For N the winter and summer half yearly coefficient is returned in tuple.
None is returned if either the own or other stations multi-annual value is not available.

	Return type:

	list of floats or None

	
get_corr(**kwargs)

	

	
get_df(kinds, period=(None, None), agg_to=None, nas_allowed=True, add_na_share=False, db_unit=False, sql_add_where=None, **kwargs)

	Get a timeseries DataFrame from the database.

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “filled_by”, “filled_share”.
For the precipitation also “qn” and “corr” are valid.
If “filled_by” is given together with an aggregation step, the “filled_by” is replaced by the “filled_share”.
The “filled_share” gives the share of filled values in the aggregation group in percent.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	agg_to (str or None, optional) – Aggregate to a given timespan.
If more than 20% of missing values in the aggregation group, the aggregated value will be None.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is True.

	add_na_share (bool, optional) – Should one or several columns be added to the Dataframe with the share of NAs in the data.
This is especially important, when the stations data get aggregated, because the aggregation doesn’t make sense if there are a lot of NAs in the original data.
If True, one column per asked kind is added with the respective share of NAs, if the aggregation step is not the smallest.
The “kind”_na_share column is in percentage.
The default is False.

	db_unit (bool, optional) – Should the result be in the Database unit.
If False the unit is getting converted to normal unit, like mm or °C.
The numbers are saved as integer in the database and got therefor multiplied by 10 or 100 to get to an integer.
The default is False.

	sql_add_where (str or None, optional) – additional sql where statement to filter the output.
E.g. “EXTRACT(MONTH FROM timestamp) == 2”
The default is None

	Returns:

	The timeserie Dataframe with a DatetimeIndex.

	Return type:

	pandas.DataFrame

	
get_dist(period=(None, None))

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	Parameters:

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	Returns:

	The timeserie for this station and the given period with the station_id and the distance in meters from which the data got filled from.

	Return type:

	pd.DataFrame

	
get_filled(period=(None, None), with_dist=False, **kwargs)

	Get the filled timeserie.

Either only the timeserie is returned or also the id of the station from which the station data got filled, together with the distance to this station in m.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	with_dist (bool, optional) – Should the distance to the stations from which the timeseries got filled be added.
The default is False.

	Returns:

	The filled timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_filled_period(kind, from_meta=False)

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

Computes the period from the timeserie or meta table.

	Parameters:

	
	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	from_meta (bool, optional) – Should the period be from the meta table?
If False: the period is returned from the timeserie. In this case this function is only a wrapper for .get_period_meta.
The default is False.

	Raises:

	
	NotImplementedError – If the given kind is not valid.

	ValueError – If the given kind is not a string.

	Returns:

	A TimestampPeriod of the filled timeserie.
(NaT, NaT) if the timeserie is all empty or not defined.

	Return type:

	util.TimestampPeriod

	
get_geom(format='EWKT', crs=None)

	Get the point geometry of the station.

	Parameters:

	
	format (str or None, optional) – The format of the geometry to return.
Needs to be a format that is understood by Postgresql.
ST_AsXXXXX function needs to exist in postgresql language.
If None, then the binary representation is returned.
the default is “EWKT”.

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	string or bytes representation of the geometry,
depending on the selected format.

	Return type:

	str or bytes

	
get_geom_shp(crs=None)

	Get the geometry of the station as a shapely Point object.

	Parameters:

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	The location of the station as shapely Point.

	Return type:

	shapely.geometries.Point

	
get_horizon()

	Get the value for the horizon angle. (Horizontabschirmung)

This value is defined by Richter (1995) as the mean horizon angle in the west direction as:
H’=0,15H(S-SW) +0,35H(SW-W) +0,35H(W-NW) +0, 15H(NW-N)

	Returns:

	The mean western horizon angle

	Return type:

	float or None

	
get_last_imp_period(all=False)

	Get the last imported Period for this Station.

	Parameters:

	all (bool, optional) – Should the maximum Timespan for all the last imports be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	(minimal datetime, maximal datetime)

	Return type:

	TimespanPeriod or tuple of datetime.datetime

	
get_ma()

	

	
get_max_period(kinds, nas_allowed=False, **kwargs)

	Get the maximum available period for this stations timeseries.

If nas_allowed is True, then the maximum range of the timeserie is returned.
Else the minimal filled period is returned

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is False.

	Returns:

	The maximum Timestamp Period

	Return type:

	utils.TimestampPeriod

	
get_meta(infos='all')

	Get Information from the meta table.

	Parameters:

	infos (list of str or str, optional) – A list of the information to get from the database.
If “all” then all the information are returned.
The default is “all”.

	Returns:

	dict with the meta information.
The first level has one entry per parameter.
The second level has one entry per information, asked for.
If only one information is asked for, then it is returned as single value and not as subdict.

	Return type:

	dict or int/string

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_multi_annual()

	Get the multi annual value(s) for this station.

	Returns:

	The corresponding multi annual value.
For T en ET the yearly value is returned.
For N the winter and summer half yearly sum is returned in tuple.
The returned unit is mm or °C.

	Return type:

	list or number

	
get_name()

	

	
get_neighboor_stids(n=5, only_real=True, p_elev=None, period=None, **kwargs)

	Get a list with Station Ids of the nearest neighboor stations.

	nint, optional
	The number of stations to return.
If None, then all the possible stations are returned.
The default is 5.

	only_real: bool, optional
	Should only real station get considered?
If false also virtual stations are part of the result.
The default is True.

	p_elevtuple of float or None, optional
	The parameters (P_1, P_2) to weight the height differences between stations.
The elevation difference is considered with the formula from LARSIM (equation 3-18 & 3-19 from the LARSIM manual):
$L_{gewichtet} = L_{horizontal} * (1 + (

	rac{|\delta H|}{P_1})^{P_2})$
	
If None, then the height difference is not considered and only the nearest stations are returned.
literature:

	LARSIM Dokumentation, Stand 06.04.2023, online unter https://www.larsim.info/dokumentation/LARSIM-Dokumentation.pdf

The default is None.

	periodutils.TimestampPeriod or None, optional
	The period for which the nearest neighboors are returned.
The neighboor station needs to have raw data for at least one half of the period.
If None, then the availability of the data is not checked.
The default is None.

	list of int
	A list of station Ids in order of distance.
The closest station is the first in the list.

	
get_period_meta(kind, all=False)

	Get a specific period from the meta information table.

This functions returns the information from the meta table.
In this table there are several periods saved, like the period of the last import.

	Parameters:

	
	kind (str) – The kind of period to return.
Should be one of [‘filled’, ‘raw’, ‘last_imp’].
filled: the maximum filled period of the filled timeserie.
raw: the maximum filled timeperiod of the raw data.
last_imp: the maximum filled timeperiod of the last import.

	all (bool, optional) – Should the maximum Timespan for all the filled periods be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	The TimespanPeriod of the station or of all the stations if all=True.

	Return type:

	TimespanPeriod

	Raises:

	ValueError – If a wrong kind is handed in.

	
get_qc(**kwargs)

	Get the quality checked timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The quality checked timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_qn(**kwargs)

	

	
get_raster_value(raster)

	

	
get_raw(**kwargs)

	Get the raw timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The raw timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_richter_class(update_if_fails=True)

	Get the richter class for this station.

Provide the data from the meta table.

	Parameters:

	update_if_fails (bool, optional) – Should the richter class get updatet if no exposition class is found in the meta table?
If False and no exposition class was found None is returned.
The default is True.

	Returns:

	The corresponding richter exposition class.

	Return type:

	string

	
get_zipfiles(only_new=True, ftp_file_list=None)

	Get the zipfiles on the CDC server with the raw data.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	Returns:

	A DataFrame of zipfiles and the corresponding modification time on the CDC server to import.

	Return type:

	pandas.DataFrame or None

	
is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “best”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	Returns:

	True if the last import of the given kind is already treated.

	Return type:

	bool

	
is_real()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is real, false if it is virtual.

	Return type:

	bool

	
is_virtual()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is virtual, false if it is real.

	Return type:

	bool

	
isin_db()

	Check if Station is already in a timeseries table.

	Returns:

	True if Station has a table in DB, no matter if it is filled or not.

	Return type:

	bool

	
isin_ma()

	Check if Station is already in the multi annual table.

	Returns:

	True if Station is in multi annual table.

	Return type:

	bool

	
isin_meta()

	Check if Station is already in the meta table.

	Returns:

	True if Station is in meta table.

	Return type:

	bool

	
last_imp_corr(_last_imp_period=None)

	A wrapper for last_imp_richter_correct().

	
last_imp_fillup(_last_imp_period=None)

	Do the gap filling of the last import.

	
last_imp_qc()

	

	
last_imp_quality_check()

	Do the quality check of the last import.

	
last_imp_richter_correct(_last_imp_period=None)

	Do the richter correction of the last import.

	Parameters:

	_last_imp_period (_type_, optional) – Give the overall period of the last import.
This is only for intern use of the stationsN method to not compute over and over again the period.
The default is None.

	
plot(period=(None, None), kind='filled', agg_to=None, **kwargs)

	Plot the data of this station.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	kind (str, optional) – The data kind to plot.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.
The default is “filled.

	agg_to (str or None, optional) – Aggregate to a given timespan.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	
quality_check(period=(None, None), **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	period (util.TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	
richter_correct(period=(None, None), **kwargs)

	Do the richter correction on the filled data for the given period.

	Parameters:

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	Raises:

	Exception – If no richter class was found for this station.

	
update_horizon(skip_if_exist=True)

	Update the horizon angle (Horizontabschirmung) in the meta table.

Get new values from the raster and put in the table.

	Parameters:

	skip_if_exist (bool, optional) – Skip updating the value if there is already a value in the meta table.
The default is True.

	Returns:

	The horizon angle in degrees (Horizontabschirmung).

	Return type:

	float

	
update_ma(skip_if_exist=True, drop_when_error=True)

	Update the multi annual values in the stations_raster_values table.

Get new values from the raster and put in the table.

	
update_period_meta(kind)

	Update the time period in the meta file.

Compute teh filled period of a timeserie and save in the meta table.

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “corr” are valid.

	
update_raw(only_new=True, ftp_file_list=None, remove_nas=True)

	Download data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	Returns:

	The raw Dataframe of the Stations data.

	Return type:

	pandas.DataFrame

	
update_richter_class(skip_if_exist=True)

	Update the richter class in the meta table.

Get new values from the raster and put in the table.

	Parameters:

	skip_if_exist (bool, optional) – Skip updating the value if there is already a value in the meta table.
The default is True

	Returns:

	The richter class name.

	Return type:

	str

StationT

	
class weatherDB.station.StationT(id, **kwargs)

	Bases: StationTETBase

A class to work with and download temperaure data for one station.

Create a Station object.

	Parameters:

	
	id (int) – The stations ID.

	_skip_meta_check (bool, optional) – Should the check if the station is in the database meta file get skiped.
Pay attention, when skipping this, because it can lead to problems.
This is for computational reasons, because it makes the initialization faster.
Is used by the stations classes, because the only initialize objects that are in the meta table.
The default is False

	Raises:

	NotImplementedError – _description_

Public Methods:

	__init__(id, **kwargs)

	Create a Station object.

	get_multi_annual()

	Get the multi annual value(s) for this station.

	get_adj(**kwargs)

	Get the adjusted timeserie.

Inherited from StationTETBase

	get_neighboor_stids([p_elev])

	Get the 5 nearest stations to this station.

	fillup([p_elev])

	Set the default P values.

	get_adj(**kwargs)

	Get the adjusted timeserie.

Inherited from StationCanVirtualBase

	isin_meta_n()

	Check if Station is in the precipitation meta table.

	quality_check([period])

	Quality check the raw data for a given period.

Inherited from StationBase

	__init__(id[, _skip_meta_check])

	Create a Station object.

	isin_db()

	Check if Station is already in a timeseries table.

	isin_meta()

	Check if Station is already in the meta table.

	isin_ma()

	Check if Station is already in the multi annual table.

	is_virtual()

	Check if the station is a real station or only a virtual one.

	is_real()

	Check if the station is a real station or only a virtual one.

	is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	update_period_meta(kind)

	Update the time period in the meta file.

	update_ma([skip_if_exist, drop_when_error])

	Update the multi annual values in the stations_raster_values table.

	update_raw([only_new, ftp_file_list, remove_nas])

	Download data from CDC and upload to database.

	get_zipfiles([only_new, ftp_file_list])

	Get the zipfiles on the CDC server with the raw data.

	download_raw([only_new])

	Download the timeserie from the CDC Server.

	quality_check([period])

	Quality check the raw data for a given period.

	fillup([period])

	Fill up missing data with measurements from nearby stations.

	last_imp_quality_check()

	Do the quality check of the last import.

	last_imp_qc()

	

	last_imp_fillup([_last_imp_period])

	Do the gap filling of the last import.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos])

	Get Information from the meta table.

	get_geom([format, crs])

	Get the point geometry of the station.

	get_geom_shp([crs])

	Get the geometry of the station as a shapely Point object.

	get_name()

	

	count_holes([weeks, kind, period, ...])

	Count holes in timeseries depending on there length.

	get_period_meta(kind[, all])

	Get a specific period from the meta information table.

	get_filled_period(kind[, from_meta])

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

	get_max_period(kinds[, nas_allowed])

	Get the maximum available period for this stations timeseries.

	get_last_imp_period([all])

	Get the last imported Period for this Station.

	get_neighboor_stids([n, only_real, p_elev, ...])

	Get a list with Station Ids of the nearest neighboor stations.

	get_multi_annual()

	Get the multi annual value(s) for this station.

	get_ma()

	

	get_raster_value(raster)

	

	get_coef(other_stid[, in_db_unit])

	Get the regionalisation coefficients due to the height.

	get_df(kinds[, period, agg_to, nas_allowed, ...])

	Get a timeseries DataFrame from the database.

	get_raw(**kwargs)

	Get the raw timeserie.

	get_qc(**kwargs)

	Get the quality checked timeserie.

	get_dist([period])

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	get_filled([period, with_dist])

	Get the filled timeserie.

	get_adj(**kwargs)

	Get the adjusted timeserie.

	plot([period, kind, agg_to])

	Plot the data of this station.

	
count_holes(weeks=[2, 4, 8, 12, 16, 20, 24], kind='qc', period=(None, None), between_meta_period=True, crop_period=False, **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	weeks (list, optional) – A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kind (str) – The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_period (bool, optional) – Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_period (bool, optional) – should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_raw(only_new=False)

	Download the timeserie from the CDC Server.

This function only returns the timeserie, but is not updating the database.

	Parameters:

	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is False.

	Returns:

	The Timeseries as a DataFrame with a Timestamp Index.

	Return type:

	pandas.DataFrame

	
fillup(p_elev=(250, 1.5), **kwargs)

	Set the default P values. See _get_sql_near_median for more informations.

	
get_adj(**kwargs)

	Get the adjusted timeserie.

The timeserie get adjusted to match the multi-annual value over the given period.
So the yearly variability is kept and only the whole period is adjusted.

	Returns:

	The adjusted timeserie with the timestamp as index.

	Return type:

	pd.DataFrame

	
get_coef(other_stid, in_db_unit=False)

	Get the regionalisation coefficients due to the height.

Those are the values from the dwd grid, HYRAS or REGNIE grids.

	Parameters:

	
	other_stid (int) – The Station Id of the other station from wich to regionalise for own station.

	in_db_unit (bool, optional) – Should the coefficients be returned in the unit as stored in the database?
This is only relevant for the temperature.
The default is False.

	Returns:

	A list of coefficients.
For T, ET and N-daily only the the yearly coefficient is returned.
For N the winter and summer half yearly coefficient is returned in tuple.
None is returned if either the own or other stations multi-annual value is not available.

	Return type:

	list of floats or None

	
get_df(kinds, period=(None, None), agg_to=None, nas_allowed=True, add_na_share=False, db_unit=False, sql_add_where=None, **kwargs)

	Get a timeseries DataFrame from the database.

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “filled_by”, “filled_share”.
For the precipitation also “qn” and “corr” are valid.
If “filled_by” is given together with an aggregation step, the “filled_by” is replaced by the “filled_share”.
The “filled_share” gives the share of filled values in the aggregation group in percent.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	agg_to (str or None, optional) – Aggregate to a given timespan.
If more than 20% of missing values in the aggregation group, the aggregated value will be None.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is True.

	add_na_share (bool, optional) – Should one or several columns be added to the Dataframe with the share of NAs in the data.
This is especially important, when the stations data get aggregated, because the aggregation doesn’t make sense if there are a lot of NAs in the original data.
If True, one column per asked kind is added with the respective share of NAs, if the aggregation step is not the smallest.
The “kind”_na_share column is in percentage.
The default is False.

	db_unit (bool, optional) – Should the result be in the Database unit.
If False the unit is getting converted to normal unit, like mm or °C.
The numbers are saved as integer in the database and got therefor multiplied by 10 or 100 to get to an integer.
The default is False.

	sql_add_where (str or None, optional) – additional sql where statement to filter the output.
E.g. “EXTRACT(MONTH FROM timestamp) == 2”
The default is None

	Returns:

	The timeserie Dataframe with a DatetimeIndex.

	Return type:

	pandas.DataFrame

	
get_dist(period=(None, None))

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	Parameters:

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	Returns:

	The timeserie for this station and the given period with the station_id and the distance in meters from which the data got filled from.

	Return type:

	pd.DataFrame

	
get_filled(period=(None, None), with_dist=False, **kwargs)

	Get the filled timeserie.

Either only the timeserie is returned or also the id of the station from which the station data got filled, together with the distance to this station in m.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	with_dist (bool, optional) – Should the distance to the stations from which the timeseries got filled be added.
The default is False.

	Returns:

	The filled timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_filled_period(kind, from_meta=False)

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

Computes the period from the timeserie or meta table.

	Parameters:

	
	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	from_meta (bool, optional) – Should the period be from the meta table?
If False: the period is returned from the timeserie. In this case this function is only a wrapper for .get_period_meta.
The default is False.

	Raises:

	
	NotImplementedError – If the given kind is not valid.

	ValueError – If the given kind is not a string.

	Returns:

	A TimestampPeriod of the filled timeserie.
(NaT, NaT) if the timeserie is all empty or not defined.

	Return type:

	util.TimestampPeriod

	
get_geom(format='EWKT', crs=None)

	Get the point geometry of the station.

	Parameters:

	
	format (str or None, optional) – The format of the geometry to return.
Needs to be a format that is understood by Postgresql.
ST_AsXXXXX function needs to exist in postgresql language.
If None, then the binary representation is returned.
the default is “EWKT”.

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	string or bytes representation of the geometry,
depending on the selected format.

	Return type:

	str or bytes

	
get_geom_shp(crs=None)

	Get the geometry of the station as a shapely Point object.

	Parameters:

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	The location of the station as shapely Point.

	Return type:

	shapely.geometries.Point

	
get_last_imp_period(all=False)

	Get the last imported Period for this Station.

	Parameters:

	all (bool, optional) – Should the maximum Timespan for all the last imports be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	(minimal datetime, maximal datetime)

	Return type:

	TimespanPeriod or tuple of datetime.datetime

	
get_ma()

	

	
get_max_period(kinds, nas_allowed=False, **kwargs)

	Get the maximum available period for this stations timeseries.

If nas_allowed is True, then the maximum range of the timeserie is returned.
Else the minimal filled period is returned

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is False.

	Returns:

	The maximum Timestamp Period

	Return type:

	utils.TimestampPeriod

	
get_meta(infos='all')

	Get Information from the meta table.

	Parameters:

	infos (list of str or str, optional) – A list of the information to get from the database.
If “all” then all the information are returned.
The default is “all”.

	Returns:

	dict with the meta information.
The first level has one entry per parameter.
The second level has one entry per information, asked for.
If only one information is asked for, then it is returned as single value and not as subdict.

	Return type:

	dict or int/string

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_multi_annual()

	Get the multi annual value(s) for this station.

	Returns:

	The corresponding multi annual value.
For T en ET the yearly value is returned.
For N the winter and summer half yearly sum is returned in tuple.
The returned unit is mm or °C.

	Return type:

	list or number

	
get_name()

	

	
get_neighboor_stids(p_elev=(250, 1.5), **kwargs)

	Get the 5 nearest stations to this station.

	Parameters:

	p_elev (tuple, optional) – In Larsim those parameters are defined as $P_1 = 500$ and $P_2 = 1$.
Stoelzle et al. (2016) found that $P_1 = 100$ and $P_2 = 4$ is better for Baden-Würtemberg to consider the quick changes in topographie.
For all of germany, those parameter values are giving too much weight to the elevation difference, which can result in getting neighboor stations from the border of the Tschec Republic for the Feldberg station. Therefor the values $P_1 = 250$ and $P_2 = 1.5$ are used as default values.
literature:

	Stoelzle, Michael & Weiler, Markus & Steinbrich, Andreas. (2016) Starkregengefährdung in Baden-Württemberg – von der Methodenentwicklung zur Starkregenkartierung. Tag der Hydrologie.

	LARSIM Dokumentation, Stand 06.04.2023, online unter https://www.larsim.info/dokumentation/LARSIM-Dokumentation.pdf

The default is (250, 1.5).

	Returns:

	description

	Return type:

	type

	
get_period_meta(kind, all=False)

	Get a specific period from the meta information table.

This functions returns the information from the meta table.
In this table there are several periods saved, like the period of the last import.

	Parameters:

	
	kind (str) – The kind of period to return.
Should be one of [‘filled’, ‘raw’, ‘last_imp’].
filled: the maximum filled period of the filled timeserie.
raw: the maximum filled timeperiod of the raw data.
last_imp: the maximum filled timeperiod of the last import.

	all (bool, optional) – Should the maximum Timespan for all the filled periods be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	The TimespanPeriod of the station or of all the stations if all=True.

	Return type:

	TimespanPeriod

	Raises:

	ValueError – If a wrong kind is handed in.

	
get_qc(**kwargs)

	Get the quality checked timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The quality checked timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_raster_value(raster)

	

	
get_raw(**kwargs)

	Get the raw timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The raw timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_zipfiles(only_new=True, ftp_file_list=None)

	Get the zipfiles on the CDC server with the raw data.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	Returns:

	A DataFrame of zipfiles and the corresponding modification time on the CDC server to import.

	Return type:

	pandas.DataFrame or None

	
is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “best”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	Returns:

	True if the last import of the given kind is already treated.

	Return type:

	bool

	
is_real()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is real, false if it is virtual.

	Return type:

	bool

	
is_virtual()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is virtual, false if it is real.

	Return type:

	bool

	
isin_db()

	Check if Station is already in a timeseries table.

	Returns:

	True if Station has a table in DB, no matter if it is filled or not.

	Return type:

	bool

	
isin_ma()

	Check if Station is already in the multi annual table.

	Returns:

	True if Station is in multi annual table.

	Return type:

	bool

	
isin_meta()

	Check if Station is already in the meta table.

	Returns:

	True if Station is in meta table.

	Return type:

	bool

	
isin_meta_n()

	Check if Station is in the precipitation meta table.

	Returns:

	True if Station is in the precipitation meta table.

	Return type:

	bool

	
last_imp_fillup(_last_imp_period=None)

	Do the gap filling of the last import.

	
last_imp_qc()

	

	
last_imp_quality_check()

	Do the quality check of the last import.

	
plot(period=(None, None), kind='filled', agg_to=None, **kwargs)

	Plot the data of this station.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	kind (str, optional) – The data kind to plot.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.
The default is “filled.

	agg_to (str or None, optional) – Aggregate to a given timespan.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	
quality_check(period=(None, None), **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	period (util.TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	
update_ma(skip_if_exist=True, drop_when_error=True)

	Update the multi annual values in the stations_raster_values table.

Get new values from the raster and put in the table.

	
update_period_meta(kind)

	Update the time period in the meta file.

Compute teh filled period of a timeserie and save in the meta table.

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “corr” are valid.

	
update_raw(only_new=True, ftp_file_list=None, remove_nas=True)

	Download data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	Returns:

	The raw Dataframe of the Stations data.

	Return type:

	pandas.DataFrame

StationET

	
class weatherDB.station.StationET(id, **kwargs)

	Bases: StationTETBase

A class to work with and download potential Evapotranspiration (VPGB) data for one station.

Create a Station object.

	Parameters:

	
	id (int) – The stations ID.

	_skip_meta_check (bool, optional) – Should the check if the station is in the database meta file get skiped.
Pay attention, when skipping this, because it can lead to problems.
This is for computational reasons, because it makes the initialization faster.
Is used by the stations classes, because the only initialize objects that are in the meta table.
The default is False

	Raises:

	NotImplementedError – _description_

Public Methods:

	__init__(id, **kwargs)

	Create a Station object.

	get_adj(**kwargs)

	Get the adjusted timeserie.

Inherited from StationTETBase

	get_neighboor_stids([p_elev])

	Get the 5 nearest stations to this station.

	fillup([p_elev])

	Set the default P values.

	get_adj(**kwargs)

	Get the adjusted timeserie.

Inherited from StationCanVirtualBase

	isin_meta_n()

	Check if Station is in the precipitation meta table.

	quality_check([period])

	Quality check the raw data for a given period.

Inherited from StationBase

	__init__(id[, _skip_meta_check])

	Create a Station object.

	isin_db()

	Check if Station is already in a timeseries table.

	isin_meta()

	Check if Station is already in the meta table.

	isin_ma()

	Check if Station is already in the multi annual table.

	is_virtual()

	Check if the station is a real station or only a virtual one.

	is_real()

	Check if the station is a real station or only a virtual one.

	is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	update_period_meta(kind)

	Update the time period in the meta file.

	update_ma([skip_if_exist, drop_when_error])

	Update the multi annual values in the stations_raster_values table.

	update_raw([only_new, ftp_file_list, remove_nas])

	Download data from CDC and upload to database.

	get_zipfiles([only_new, ftp_file_list])

	Get the zipfiles on the CDC server with the raw data.

	download_raw([only_new])

	Download the timeserie from the CDC Server.

	quality_check([period])

	Quality check the raw data for a given period.

	fillup([period])

	Fill up missing data with measurements from nearby stations.

	last_imp_quality_check()

	Do the quality check of the last import.

	last_imp_qc()

	

	last_imp_fillup([_last_imp_period])

	Do the gap filling of the last import.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos])

	Get Information from the meta table.

	get_geom([format, crs])

	Get the point geometry of the station.

	get_geom_shp([crs])

	Get the geometry of the station as a shapely Point object.

	get_name()

	

	count_holes([weeks, kind, period, ...])

	Count holes in timeseries depending on there length.

	get_period_meta(kind[, all])

	Get a specific period from the meta information table.

	get_filled_period(kind[, from_meta])

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

	get_max_period(kinds[, nas_allowed])

	Get the maximum available period for this stations timeseries.

	get_last_imp_period([all])

	Get the last imported Period for this Station.

	get_neighboor_stids([n, only_real, p_elev, ...])

	Get a list with Station Ids of the nearest neighboor stations.

	get_multi_annual()

	Get the multi annual value(s) for this station.

	get_ma()

	

	get_raster_value(raster)

	

	get_coef(other_stid[, in_db_unit])

	Get the regionalisation coefficients due to the height.

	get_df(kinds[, period, agg_to, nas_allowed, ...])

	Get a timeseries DataFrame from the database.

	get_raw(**kwargs)

	Get the raw timeserie.

	get_qc(**kwargs)

	Get the quality checked timeserie.

	get_dist([period])

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	get_filled([period, with_dist])

	Get the filled timeserie.

	get_adj(**kwargs)

	Get the adjusted timeserie.

	plot([period, kind, agg_to])

	Plot the data of this station.

	
count_holes(weeks=[2, 4, 8, 12, 16, 20, 24], kind='qc', period=(None, None), between_meta_period=True, crop_period=False, **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	weeks (list, optional) – A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kind (str) – The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_period (bool, optional) – Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_period (bool, optional) – should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_raw(only_new=False)

	Download the timeserie from the CDC Server.

This function only returns the timeserie, but is not updating the database.

	Parameters:

	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is False.

	Returns:

	The Timeseries as a DataFrame with a Timestamp Index.

	Return type:

	pandas.DataFrame

	
fillup(p_elev=(250, 1.5), **kwargs)

	Set the default P values. See _get_sql_near_median for more informations.

	
get_adj(**kwargs)

	Get the adjusted timeserie.

The timeserie get adjusted to match the multi-annual value over the given period.
So the yearly variability is kept and only the whole period is adjusted.

	Returns:

	The adjusted timeserie with the timestamp as index.

	Return type:

	pd.DataFrame

	
get_coef(other_stid, in_db_unit=False)

	Get the regionalisation coefficients due to the height.

Those are the values from the dwd grid, HYRAS or REGNIE grids.

	Parameters:

	
	other_stid (int) – The Station Id of the other station from wich to regionalise for own station.

	in_db_unit (bool, optional) – Should the coefficients be returned in the unit as stored in the database?
This is only relevant for the temperature.
The default is False.

	Returns:

	A list of coefficients.
For T, ET and N-daily only the the yearly coefficient is returned.
For N the winter and summer half yearly coefficient is returned in tuple.
None is returned if either the own or other stations multi-annual value is not available.

	Return type:

	list of floats or None

	
get_df(kinds, period=(None, None), agg_to=None, nas_allowed=True, add_na_share=False, db_unit=False, sql_add_where=None, **kwargs)

	Get a timeseries DataFrame from the database.

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “filled_by”, “filled_share”.
For the precipitation also “qn” and “corr” are valid.
If “filled_by” is given together with an aggregation step, the “filled_by” is replaced by the “filled_share”.
The “filled_share” gives the share of filled values in the aggregation group in percent.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	agg_to (str or None, optional) – Aggregate to a given timespan.
If more than 20% of missing values in the aggregation group, the aggregated value will be None.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is True.

	add_na_share (bool, optional) – Should one or several columns be added to the Dataframe with the share of NAs in the data.
This is especially important, when the stations data get aggregated, because the aggregation doesn’t make sense if there are a lot of NAs in the original data.
If True, one column per asked kind is added with the respective share of NAs, if the aggregation step is not the smallest.
The “kind”_na_share column is in percentage.
The default is False.

	db_unit (bool, optional) – Should the result be in the Database unit.
If False the unit is getting converted to normal unit, like mm or °C.
The numbers are saved as integer in the database and got therefor multiplied by 10 or 100 to get to an integer.
The default is False.

	sql_add_where (str or None, optional) – additional sql where statement to filter the output.
E.g. “EXTRACT(MONTH FROM timestamp) == 2”
The default is None

	Returns:

	The timeserie Dataframe with a DatetimeIndex.

	Return type:

	pandas.DataFrame

	
get_dist(period=(None, None))

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	Parameters:

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	Returns:

	The timeserie for this station and the given period with the station_id and the distance in meters from which the data got filled from.

	Return type:

	pd.DataFrame

	
get_filled(period=(None, None), with_dist=False, **kwargs)

	Get the filled timeserie.

Either only the timeserie is returned or also the id of the station from which the station data got filled, together with the distance to this station in m.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	with_dist (bool, optional) – Should the distance to the stations from which the timeseries got filled be added.
The default is False.

	Returns:

	The filled timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_filled_period(kind, from_meta=False)

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

Computes the period from the timeserie or meta table.

	Parameters:

	
	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	from_meta (bool, optional) – Should the period be from the meta table?
If False: the period is returned from the timeserie. In this case this function is only a wrapper for .get_period_meta.
The default is False.

	Raises:

	
	NotImplementedError – If the given kind is not valid.

	ValueError – If the given kind is not a string.

	Returns:

	A TimestampPeriod of the filled timeserie.
(NaT, NaT) if the timeserie is all empty or not defined.

	Return type:

	util.TimestampPeriod

	
get_geom(format='EWKT', crs=None)

	Get the point geometry of the station.

	Parameters:

	
	format (str or None, optional) – The format of the geometry to return.
Needs to be a format that is understood by Postgresql.
ST_AsXXXXX function needs to exist in postgresql language.
If None, then the binary representation is returned.
the default is “EWKT”.

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	string or bytes representation of the geometry,
depending on the selected format.

	Return type:

	str or bytes

	
get_geom_shp(crs=None)

	Get the geometry of the station as a shapely Point object.

	Parameters:

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	The location of the station as shapely Point.

	Return type:

	shapely.geometries.Point

	
get_last_imp_period(all=False)

	Get the last imported Period for this Station.

	Parameters:

	all (bool, optional) – Should the maximum Timespan for all the last imports be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	(minimal datetime, maximal datetime)

	Return type:

	TimespanPeriod or tuple of datetime.datetime

	
get_ma()

	

	
get_max_period(kinds, nas_allowed=False, **kwargs)

	Get the maximum available period for this stations timeseries.

If nas_allowed is True, then the maximum range of the timeserie is returned.
Else the minimal filled period is returned

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is False.

	Returns:

	The maximum Timestamp Period

	Return type:

	utils.TimestampPeriod

	
get_meta(infos='all')

	Get Information from the meta table.

	Parameters:

	infos (list of str or str, optional) – A list of the information to get from the database.
If “all” then all the information are returned.
The default is “all”.

	Returns:

	dict with the meta information.
The first level has one entry per parameter.
The second level has one entry per information, asked for.
If only one information is asked for, then it is returned as single value and not as subdict.

	Return type:

	dict or int/string

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_multi_annual()

	Get the multi annual value(s) for this station.

	Returns:

	The corresponding multi annual value.
For T en ET the yearly value is returned.
For N the winter and summer half yearly sum is returned in tuple.
The returned unit is mm or °C.

	Return type:

	list or number

	
get_name()

	

	
get_neighboor_stids(p_elev=(250, 1.5), **kwargs)

	Get the 5 nearest stations to this station.

	Parameters:

	p_elev (tuple, optional) – In Larsim those parameters are defined as $P_1 = 500$ and $P_2 = 1$.
Stoelzle et al. (2016) found that $P_1 = 100$ and $P_2 = 4$ is better for Baden-Würtemberg to consider the quick changes in topographie.
For all of germany, those parameter values are giving too much weight to the elevation difference, which can result in getting neighboor stations from the border of the Tschec Republic for the Feldberg station. Therefor the values $P_1 = 250$ and $P_2 = 1.5$ are used as default values.
literature:

	Stoelzle, Michael & Weiler, Markus & Steinbrich, Andreas. (2016) Starkregengefährdung in Baden-Württemberg – von der Methodenentwicklung zur Starkregenkartierung. Tag der Hydrologie.

	LARSIM Dokumentation, Stand 06.04.2023, online unter https://www.larsim.info/dokumentation/LARSIM-Dokumentation.pdf

The default is (250, 1.5).

	Returns:

	description

	Return type:

	type

	
get_period_meta(kind, all=False)

	Get a specific period from the meta information table.

This functions returns the information from the meta table.
In this table there are several periods saved, like the period of the last import.

	Parameters:

	
	kind (str) – The kind of period to return.
Should be one of [‘filled’, ‘raw’, ‘last_imp’].
filled: the maximum filled period of the filled timeserie.
raw: the maximum filled timeperiod of the raw data.
last_imp: the maximum filled timeperiod of the last import.

	all (bool, optional) – Should the maximum Timespan for all the filled periods be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	The TimespanPeriod of the station or of all the stations if all=True.

	Return type:

	TimespanPeriod

	Raises:

	ValueError – If a wrong kind is handed in.

	
get_qc(**kwargs)

	Get the quality checked timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The quality checked timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_raster_value(raster)

	

	
get_raw(**kwargs)

	Get the raw timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The raw timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_zipfiles(only_new=True, ftp_file_list=None)

	Get the zipfiles on the CDC server with the raw data.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	Returns:

	A DataFrame of zipfiles and the corresponding modification time on the CDC server to import.

	Return type:

	pandas.DataFrame or None

	
is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “best”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	Returns:

	True if the last import of the given kind is already treated.

	Return type:

	bool

	
is_real()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is real, false if it is virtual.

	Return type:

	bool

	
is_virtual()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is virtual, false if it is real.

	Return type:

	bool

	
isin_db()

	Check if Station is already in a timeseries table.

	Returns:

	True if Station has a table in DB, no matter if it is filled or not.

	Return type:

	bool

	
isin_ma()

	Check if Station is already in the multi annual table.

	Returns:

	True if Station is in multi annual table.

	Return type:

	bool

	
isin_meta()

	Check if Station is already in the meta table.

	Returns:

	True if Station is in meta table.

	Return type:

	bool

	
isin_meta_n()

	Check if Station is in the precipitation meta table.

	Returns:

	True if Station is in the precipitation meta table.

	Return type:

	bool

	
last_imp_fillup(_last_imp_period=None)

	Do the gap filling of the last import.

	
last_imp_qc()

	

	
last_imp_quality_check()

	Do the quality check of the last import.

	
plot(period=(None, None), kind='filled', agg_to=None, **kwargs)

	Plot the data of this station.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	kind (str, optional) – The data kind to plot.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.
The default is “filled.

	agg_to (str or None, optional) – Aggregate to a given timespan.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	
quality_check(period=(None, None), **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	period (util.TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	
update_ma(skip_if_exist=True, drop_when_error=True)

	Update the multi annual values in the stations_raster_values table.

Get new values from the raster and put in the table.

	
update_period_meta(kind)

	Update the time period in the meta file.

Compute teh filled period of a timeserie and save in the meta table.

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “corr” are valid.

	
update_raw(only_new=True, ftp_file_list=None, remove_nas=True)

	Download data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	Returns:

	The raw Dataframe of the Stations data.

	Return type:

	pandas.DataFrame

StationND

GroupStation

	
class weatherDB.station.GroupStation(id, error_if_missing=True, **kwargs)

	Bases: object

A class to group all possible parameters of one station.

So if you want to create the input files for a simulation, where you need T, ET and N, use this class to download the data for one station.

Public Methods:

	__init__(id[, error_if_missing])

	

	get_available_paras([short])

	Get the possible parameters for this station.

	get_filled_period([kinds, from_meta, join_how])

	Get the combined filled period for all 3 stations.

	get_df([period, kinds, paras, agg_to, ...])

	Get a DataFrame with the corresponding data.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_max_period(kinds[, nas_allowed])

	Get the maximum available period for this stations timeseries.

	get_meta([paras])

	Get the meta information for every parameter of this station.

	get_geom()

	

	get_name()

	

	create_roger_ts(dir[, period, kind, r_r0, ...])

	Create the timeserie files for roger as csv.

	create_ts(dir[, period, kinds, paras, ...])

	Create the timeserie files as csv.

	
create_roger_ts(dir, period=(None, None), kind='best', r_r0=1, add_t_min=False, add_t_max=False, do_toolbox_format=False, **kwargs)

	Create the timeserie files for roger as csv.

This is only a wrapper function for create_ts with some standard settings.

	Parameters:

	
	dir (pathlib like object or zipfile.ZipFile) – The directory or Zipfile to store the timeseries in.
If a zipfile is given a folder with the statiopns ID is added to the filepath.

	period (TimestampPeriod like object, optional) – The period for which to get the timeseries.
If (None, None) is entered, then the maximal possible period is computed.
The default is (None, None)

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	r_r0 (int or float, list of int or float or None, optional) – Should the ET timeserie contain a column with R/R0.
If None, then no column is added.
If int or float, then a R/R0 column is appended with this number as standard value.
If list of int or floats, then the list should have the same length as the ET-timeserie and is appanded to the Timeserie.
If pd.Series, then the index should be a timestamp index. The serie is then joined to the ET timeserie.
The default is 1.

	add_t_min=False (bool, optional) – Schould the minimal temperature value get added?
The default is False.

	add_t_max=False (bool, optional) – Schould the maximal temperature value get added?
The default is False.

	do_toolbox_format (bool, optional) – Should the timeseries be saved in the RoGeR toolbox format? (have a look at the RoGeR examples in https://github.com/Hydrology-IFH/roger)
The default is False.

	**kwargs – additional parameters for Station.get_df

	Raises:

	Warning – If there are NAs in the timeseries or the period got changed.

	
create_ts(dir, period=(None, None), kinds='best', paras='all', agg_to='10 min', r_r0=None, split_date=False, nas_allowed=True, add_na_share=False, add_t_min=False, add_t_max=False, add_meta=True, file_names={}, col_names={}, keep_date_parts=False, **kwargs)

	Create the timeserie files as csv.

	Parameters:

	
	dir (pathlib like object or zipfile.ZipFile) – The directory or Zipfile to store the timeseries in.
If a zipfile is given a folder with the statiopns ID is added to the filepath.

	period (TimestampPeriod like object, optional) – The period for which to get the timeseries.
If (None, None) is entered, then the maximal possible period is computed.
The default is (None, None)

	kinds (str or list of str) – The data kinds to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “filled_by”, “filled_share”, “best”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.
If only one kind is asked for, then the columns get renamed to only have the parameter name as column name.

	paras (list of str or str, optional) – Give the parameters for which to get the meta information.
Can be “n”, “t”, “et” or “all”.
If “all”, then every available station parameter is returned.
The default is “all”

	agg_to (str, optional) – To what aggregation level should the timeseries get aggregated to.
The minimum aggregation for Temperatur and ET is daily and for the precipitation it is 10 minutes.
If a smaller aggregation is selected the minimum possible aggregation for the respective parameter is returned.
So if 10 minutes is selected, than precipitation is returned in 10 minuets and T and ET as daily.
The default is “10 min”.

	r_r0 (int or float or None or pd.Series or list, optional) – Should the ET timeserie contain a column with R/R0.
If None, then no column is added.
If int, then a R/R0 column is appended with this number as standard value.
If list of int or floats, then the list should have the same length as the ET-timeserie and is appanded to the Timeserie.
If pd.Series, then the index should be a timestamp index. The serie is then joined to the ET timeserie.
The default is None.

	split_date (bool, optional) – Should the timestamp get splitted into parts, so one column for year, one for month etc.?
If False the timestamp is saved in one column as string.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is True.

	add_na_share (bool, optional) – Should one or several columns be added to the Dataframe with the share of NAs in the data.
This is especially important, when the stations data get aggregated, because the aggregation doesn’t make sense if there are a lot of NAs in the original data.
If True, one column per asked kind is added with the respective share of NAs, if the aggregation step is not the smallest.
The “kind”_na_share column is in percentage.
The default is False.

	add_t_min=False (bool, optional) – Should the minimal temperature value get added?
The default is False.

	add_t_max=False (bool, optional) – Should the maximal temperature value get added?
The default is False.

	add_meta (bool, optional) – Should station Meta information like name and Location (lat, long) be added to the file?
The default is True.

	file_names (dict, optional) – A dictionary with the file names for the different parameters.
e.g.{“N”:”PREC.txt”, “T”:”TA.txt”, “ET”:”ET.txt”}
If an empty dictionary is given, then the standard names are used.
The default is {}.

	col_names (dict, optional) – A dictionary with the column names for the different parameters.
e.g.{“N”:”PREC”, “T”:”TA”, “ET”:”ET”, “Jahr”:”YYYY”, “Monat”:”MM”, “Tag”:”DD”, “Stunde”:”HH”, “Minute”:”MN”}
If an empty dictionary is given, then the standard names are used.
The default is {}.

	keep_date_parts (bool, optional) – only used if split_date is True.
Should the date parts that are not needed, e.g. hour value for daily timeseries, be kept?
If False, then the columns that are not needed are dropped.
The default is False.

	**kwargs – additional parameters for Station.get_df

	Raises:

	Warning – If there are NAs in the timeseries and nas_allowed is False
 or the period got changed.

	
get_available_paras(short=False)

	Get the possible parameters for this station.

	Parameters:

	short (bool, optional) – Should the short name of the parameters be returned.
The default is “long”.

	Returns:

	A list of the long parameter names that are possible for this station to get.

	Return type:

	list of str

	
get_df(period=(None, None), kinds='best', paras='all', agg_to='day', nas_allowed=True, add_na_share=False, add_t_min=False, add_t_max=False, **kwargs)

	Get a DataFrame with the corresponding data.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	kinds (str or list of str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “filled_by”, “best”(“corr” for N and “filled” for T and ET).
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	agg_to (str, optional) – To what aggregation level should the timeseries get aggregated to.
The minimum aggregation for Temperatur and ET is daily and for the precipitation it is 10 minutes.
If a smaller aggregation is selected the minimum possible aggregation for the respective parameter is returned.
So if 10 minutes is selected, than precipitation is returned in 10 minuets and T and ET as daily.
The default is “10 min”.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is True.

	paras (list of str or str, optional) – Give the parameters for which to get the meta information.
Can be “n”, “t”, “et” or “all”.
If “all”, then every available station parameter is returned.
The default is “all”

	add_na_share (bool, optional) – Should one or several columns be added to the Dataframe with the share of NAs in the data.
This is especially important, when the stations data get aggregated, because the aggregation doesn’t make sense if there are a lot of NAs in the original data.
If True, one column per asked kind is added with the respective share of NAs, if the aggregation step is not the smallest.
The “kind”_na_share column is in percentage.
The default is False.

	add_t_min (bool, optional) – Should the minimal temperature value get added?
The default is False.

	add_t_max (bool, optional) – Should the maximal temperature value get added?
The default is False.

	Returns:

	A DataFrame with the timeseries for this station and the given period.

	Return type:

	pd.Dataframe

	
get_filled_period(kinds='best', from_meta=True, join_how='inner')

	Get the combined filled period for all 3 stations.

This is the maximum possible timerange for these stations.

	Parameters:

	
	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	from_meta (bool, optional) – Should the period be from the meta table?
If False: the period is returned from the timeserie. In this case this function is only a wrapper for .get_period_meta.
The default is True.

	join_how (str, optional) – How should the different periods get joined.
If “inner” then the minimal period that is inside of all the filled_periods is returned.
If “outer” then the maximal possible period is returned.
The default is “inner”.

	Returns:

	The maximum filled period for the 3 parameters for this station.

	Return type:

	TimestampPeriod

	
get_geom()

	

	
get_max_period(kinds, nas_allowed=False)

	Get the maximum available period for this stations timeseries.

If nas_allowed is True, then the maximum range of the timeserie is returned.
Else the minimal filled period is returned

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is False.

	Returns:

	The maximum Timestamp Period

	Return type:

	utils.TimestampPeriod

	
get_meta(paras='all', **kwargs)

	Get the meta information for every parameter of this station.

	Parameters:

	
	paras (list of str or str, optional) – Give the parameters for which to get the meta information.
Can be “n”, “t”, “et” or “all”.
If “all”, then every available station parameter is returned.
The default is “all”

	kwargs (dict, optional) – The optional keyword arguments are handed to the single Station get_meta methods. Can be e.g. “info”.

	Returns:

	dict with the information.
there is one subdict per parameter.
If only one parameter is asked for, then there is no subdict, but only a single value.

	Return type:

	dict

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_name()

	

StationBase…

Those are the base station classes on which the real station classes above depend on.
None of them is working on its own, because the class variables are not yet set correctly.

	
class weatherDB.station.StationBase(id, _skip_meta_check=False)

	Bases: object

This is the Base class for one Station.
It is not working on it’s own, because those parameters need to get defined in the real classes

Create a Station object.

	Parameters:

	
	id (int) – The stations ID.

	_skip_meta_check (bool, optional) – Should the check if the station is in the database meta file get skiped.
Pay attention, when skipping this, because it can lead to problems.
This is for computational reasons, because it makes the initialization faster.
Is used by the stations classes, because the only initialize objects that are in the meta table.
The default is False

	Raises:

	NotImplementedError – _description_

Public Methods:

	__init__(id[, _skip_meta_check])

	Create a Station object.

	isin_db()

	Check if Station is already in a timeseries table.

	isin_meta()

	Check if Station is already in the meta table.

	isin_ma()

	Check if Station is already in the multi annual table.

	is_virtual()

	Check if the station is a real station or only a virtual one.

	is_real()

	Check if the station is a real station or only a virtual one.

	is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	update_period_meta(kind)

	Update the time period in the meta file.

	update_ma([skip_if_exist, drop_when_error])

	Update the multi annual values in the stations_raster_values table.

	update_raw([only_new, ftp_file_list, remove_nas])

	Download data from CDC and upload to database.

	get_zipfiles([only_new, ftp_file_list])

	Get the zipfiles on the CDC server with the raw data.

	download_raw([only_new])

	Download the timeserie from the CDC Server.

	quality_check([period])

	Quality check the raw data for a given period.

	fillup([period])

	Fill up missing data with measurements from nearby stations.

	last_imp_quality_check()

	Do the quality check of the last import.

	last_imp_qc()

	

	last_imp_fillup([_last_imp_period])

	Do the gap filling of the last import.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos])

	Get Information from the meta table.

	get_geom([format, crs])

	Get the point geometry of the station.

	get_geom_shp([crs])

	Get the geometry of the station as a shapely Point object.

	get_name()

	

	count_holes([weeks, kind, period, ...])

	Count holes in timeseries depending on there length.

	get_period_meta(kind[, all])

	Get a specific period from the meta information table.

	get_filled_period(kind[, from_meta])

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

	get_max_period(kinds[, nas_allowed])

	Get the maximum available period for this stations timeseries.

	get_last_imp_period([all])

	Get the last imported Period for this Station.

	get_neighboor_stids([n, only_real, p_elev, ...])

	Get a list with Station Ids of the nearest neighboor stations.

	get_multi_annual()

	Get the multi annual value(s) for this station.

	get_ma()

	

	get_raster_value(raster)

	

	get_coef(other_stid[, in_db_unit])

	Get the regionalisation coefficients due to the height.

	get_df(kinds[, period, agg_to, nas_allowed, ...])

	Get a timeseries DataFrame from the database.

	get_raw(**kwargs)

	Get the raw timeserie.

	get_qc(**kwargs)

	Get the quality checked timeserie.

	get_dist([period])

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	get_filled([period, with_dist])

	Get the filled timeserie.

	get_adj(**kwargs)

	Get the adjusted timeserie.

	plot([period, kind, agg_to])

	Plot the data of this station.

	
count_holes(weeks=[2, 4, 8, 12, 16, 20, 24], kind='qc', period=(None, None), between_meta_period=True, crop_period=False, **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	weeks (list, optional) – A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kind (str) – The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_period (bool, optional) – Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_period (bool, optional) – should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_raw(only_new=False)

	Download the timeserie from the CDC Server.

This function only returns the timeserie, but is not updating the database.

	Parameters:

	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is False.

	Returns:

	The Timeseries as a DataFrame with a Timestamp Index.

	Return type:

	pandas.DataFrame

	
fillup(period=(None, None), **kwargs)

	Fill up missing data with measurements from nearby stations.

	Parameters:

	
	period (util.TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to gap fill the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	kwargs (dict, optional) – Additional arguments for the fillup function.
e.g. p_elev to consider the elevation to select nearest stations. (only for T and ET)

	
get_adj(**kwargs)

	Get the adjusted timeserie.

The timeserie is adjusted to the multi annual mean.
So the overall mean of the given period will be the same as the multi annual mean.

	Parameters:

	kwargs (dict, optional) – The keyword arguments are passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”.

	Returns:

	A timeserie with the adjusted data.

	Return type:

	pandas.DataFrame

	
get_coef(other_stid, in_db_unit=False)

	Get the regionalisation coefficients due to the height.

Those are the values from the dwd grid, HYRAS or REGNIE grids.

	Parameters:

	
	other_stid (int) – The Station Id of the other station from wich to regionalise for own station.

	in_db_unit (bool, optional) – Should the coefficients be returned in the unit as stored in the database?
This is only relevant for the temperature.
The default is False.

	Returns:

	A list of coefficients.
For T, ET and N-daily only the the yearly coefficient is returned.
For N the winter and summer half yearly coefficient is returned in tuple.
None is returned if either the own or other stations multi-annual value is not available.

	Return type:

	list of floats or None

	
get_df(kinds, period=(None, None), agg_to=None, nas_allowed=True, add_na_share=False, db_unit=False, sql_add_where=None, **kwargs)

	Get a timeseries DataFrame from the database.

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “filled_by”, “filled_share”.
For the precipitation also “qn” and “corr” are valid.
If “filled_by” is given together with an aggregation step, the “filled_by” is replaced by the “filled_share”.
The “filled_share” gives the share of filled values in the aggregation group in percent.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	agg_to (str or None, optional) – Aggregate to a given timespan.
If more than 20% of missing values in the aggregation group, the aggregated value will be None.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is True.

	add_na_share (bool, optional) – Should one or several columns be added to the Dataframe with the share of NAs in the data.
This is especially important, when the stations data get aggregated, because the aggregation doesn’t make sense if there are a lot of NAs in the original data.
If True, one column per asked kind is added with the respective share of NAs, if the aggregation step is not the smallest.
The “kind”_na_share column is in percentage.
The default is False.

	db_unit (bool, optional) – Should the result be in the Database unit.
If False the unit is getting converted to normal unit, like mm or °C.
The numbers are saved as integer in the database and got therefor multiplied by 10 or 100 to get to an integer.
The default is False.

	sql_add_where (str or None, optional) – additional sql where statement to filter the output.
E.g. “EXTRACT(MONTH FROM timestamp) == 2”
The default is None

	Returns:

	The timeserie Dataframe with a DatetimeIndex.

	Return type:

	pandas.DataFrame

	
get_dist(period=(None, None))

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	Parameters:

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	Returns:

	The timeserie for this station and the given period with the station_id and the distance in meters from which the data got filled from.

	Return type:

	pd.DataFrame

	
get_filled(period=(None, None), with_dist=False, **kwargs)

	Get the filled timeserie.

Either only the timeserie is returned or also the id of the station from which the station data got filled, together with the distance to this station in m.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	with_dist (bool, optional) – Should the distance to the stations from which the timeseries got filled be added.
The default is False.

	Returns:

	The filled timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_filled_period(kind, from_meta=False)

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

Computes the period from the timeserie or meta table.

	Parameters:

	
	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	from_meta (bool, optional) – Should the period be from the meta table?
If False: the period is returned from the timeserie. In this case this function is only a wrapper for .get_period_meta.
The default is False.

	Raises:

	
	NotImplementedError – If the given kind is not valid.

	ValueError – If the given kind is not a string.

	Returns:

	A TimestampPeriod of the filled timeserie.
(NaT, NaT) if the timeserie is all empty or not defined.

	Return type:

	util.TimestampPeriod

	
get_geom(format='EWKT', crs=None)

	Get the point geometry of the station.

	Parameters:

	
	format (str or None, optional) – The format of the geometry to return.
Needs to be a format that is understood by Postgresql.
ST_AsXXXXX function needs to exist in postgresql language.
If None, then the binary representation is returned.
the default is “EWKT”.

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	string or bytes representation of the geometry,
depending on the selected format.

	Return type:

	str or bytes

	
get_geom_shp(crs=None)

	Get the geometry of the station as a shapely Point object.

	Parameters:

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	The location of the station as shapely Point.

	Return type:

	shapely.geometries.Point

	
get_last_imp_period(all=False)

	Get the last imported Period for this Station.

	Parameters:

	all (bool, optional) – Should the maximum Timespan for all the last imports be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	(minimal datetime, maximal datetime)

	Return type:

	TimespanPeriod or tuple of datetime.datetime

	
get_ma()

	

	
get_max_period(kinds, nas_allowed=False, **kwargs)

	Get the maximum available period for this stations timeseries.

If nas_allowed is True, then the maximum range of the timeserie is returned.
Else the minimal filled period is returned

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is False.

	Returns:

	The maximum Timestamp Period

	Return type:

	utils.TimestampPeriod

	
get_meta(infos='all')

	Get Information from the meta table.

	Parameters:

	infos (list of str or str, optional) – A list of the information to get from the database.
If “all” then all the information are returned.
The default is “all”.

	Returns:

	dict with the meta information.
The first level has one entry per parameter.
The second level has one entry per information, asked for.
If only one information is asked for, then it is returned as single value and not as subdict.

	Return type:

	dict or int/string

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_multi_annual()

	Get the multi annual value(s) for this station.

	Returns:

	The corresponding multi annual value.
For T en ET the yearly value is returned.
For N the winter and summer half yearly sum is returned in tuple.
The returned unit is mm or °C.

	Return type:

	list or number

	
get_name()

	

	
get_neighboor_stids(n=5, only_real=True, p_elev=None, period=None, **kwargs)

	Get a list with Station Ids of the nearest neighboor stations.

	nint, optional
	The number of stations to return.
If None, then all the possible stations are returned.
The default is 5.

	only_real: bool, optional
	Should only real station get considered?
If false also virtual stations are part of the result.
The default is True.

	p_elevtuple of float or None, optional
	The parameters (P_1, P_2) to weight the height differences between stations.
The elevation difference is considered with the formula from LARSIM (equation 3-18 & 3-19 from the LARSIM manual):
$L_{gewichtet} = L_{horizontal} * (1 + (

	rac{|\delta H|}{P_1})^{P_2})$
	
If None, then the height difference is not considered and only the nearest stations are returned.
literature:

	LARSIM Dokumentation, Stand 06.04.2023, online unter https://www.larsim.info/dokumentation/LARSIM-Dokumentation.pdf

The default is None.

	periodutils.TimestampPeriod or None, optional
	The period for which the nearest neighboors are returned.
The neighboor station needs to have raw data for at least one half of the period.
If None, then the availability of the data is not checked.
The default is None.

	list of int
	A list of station Ids in order of distance.
The closest station is the first in the list.

	
get_period_meta(kind, all=False)

	Get a specific period from the meta information table.

This functions returns the information from the meta table.
In this table there are several periods saved, like the period of the last import.

	Parameters:

	
	kind (str) – The kind of period to return.
Should be one of [‘filled’, ‘raw’, ‘last_imp’].
filled: the maximum filled period of the filled timeserie.
raw: the maximum filled timeperiod of the raw data.
last_imp: the maximum filled timeperiod of the last import.

	all (bool, optional) – Should the maximum Timespan for all the filled periods be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	The TimespanPeriod of the station or of all the stations if all=True.

	Return type:

	TimespanPeriod

	Raises:

	ValueError – If a wrong kind is handed in.

	
get_qc(**kwargs)

	Get the quality checked timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The quality checked timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_raster_value(raster)

	

	
get_raw(**kwargs)

	Get the raw timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The raw timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_zipfiles(only_new=True, ftp_file_list=None)

	Get the zipfiles on the CDC server with the raw data.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	Returns:

	A DataFrame of zipfiles and the corresponding modification time on the CDC server to import.

	Return type:

	pandas.DataFrame or None

	
is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “best”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	Returns:

	True if the last import of the given kind is already treated.

	Return type:

	bool

	
is_real()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is real, false if it is virtual.

	Return type:

	bool

	
is_virtual()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is virtual, false if it is real.

	Return type:

	bool

	
isin_db()

	Check if Station is already in a timeseries table.

	Returns:

	True if Station has a table in DB, no matter if it is filled or not.

	Return type:

	bool

	
isin_ma()

	Check if Station is already in the multi annual table.

	Returns:

	True if Station is in multi annual table.

	Return type:

	bool

	
isin_meta()

	Check if Station is already in the meta table.

	Returns:

	True if Station is in meta table.

	Return type:

	bool

	
last_imp_fillup(_last_imp_period=None)

	Do the gap filling of the last import.

	
last_imp_qc()

	

	
last_imp_quality_check()

	Do the quality check of the last import.

	
plot(period=(None, None), kind='filled', agg_to=None, **kwargs)

	Plot the data of this station.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	kind (str, optional) – The data kind to plot.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.
The default is “filled.

	agg_to (str or None, optional) – Aggregate to a given timespan.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	
quality_check(period=(None, None), **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	period (util.TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	
update_ma(skip_if_exist=True, drop_when_error=True)

	Update the multi annual values in the stations_raster_values table.

Get new values from the raster and put in the table.

	
update_period_meta(kind)

	Update the time period in the meta file.

Compute teh filled period of a timeserie and save in the meta table.

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “corr” are valid.

	
update_raw(only_new=True, ftp_file_list=None, remove_nas=True)

	Download data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	Returns:

	The raw Dataframe of the Stations data.

	Return type:

	pandas.DataFrame

	
class weatherDB.station.StationNBase(id, _skip_meta_check=False)

	Bases: StationBase

Create a Station object.

	Parameters:

	
	id (int) – The stations ID.

	_skip_meta_check (bool, optional) – Should the check if the station is in the database meta file get skiped.
Pay attention, when skipping this, because it can lead to problems.
This is for computational reasons, because it makes the initialization faster.
Is used by the stations classes, because the only initialize objects that are in the meta table.
The default is False

	Raises:

	NotImplementedError – _description_

Public Methods:

	get_adj(**kwargs)

	Get the adjusted timeserie.

Inherited from StationBase

	__init__(id[, _skip_meta_check])

	Create a Station object.

	isin_db()

	Check if Station is already in a timeseries table.

	isin_meta()

	Check if Station is already in the meta table.

	isin_ma()

	Check if Station is already in the multi annual table.

	is_virtual()

	Check if the station is a real station or only a virtual one.

	is_real()

	Check if the station is a real station or only a virtual one.

	is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	update_period_meta(kind)

	Update the time period in the meta file.

	update_ma([skip_if_exist, drop_when_error])

	Update the multi annual values in the stations_raster_values table.

	update_raw([only_new, ftp_file_list, remove_nas])

	Download data from CDC and upload to database.

	get_zipfiles([only_new, ftp_file_list])

	Get the zipfiles on the CDC server with the raw data.

	download_raw([only_new])

	Download the timeserie from the CDC Server.

	quality_check([period])

	Quality check the raw data for a given period.

	fillup([period])

	Fill up missing data with measurements from nearby stations.

	last_imp_quality_check()

	Do the quality check of the last import.

	last_imp_qc()

	

	last_imp_fillup([_last_imp_period])

	Do the gap filling of the last import.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos])

	Get Information from the meta table.

	get_geom([format, crs])

	Get the point geometry of the station.

	get_geom_shp([crs])

	Get the geometry of the station as a shapely Point object.

	get_name()

	

	count_holes([weeks, kind, period, ...])

	Count holes in timeseries depending on there length.

	get_period_meta(kind[, all])

	Get a specific period from the meta information table.

	get_filled_period(kind[, from_meta])

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

	get_max_period(kinds[, nas_allowed])

	Get the maximum available period for this stations timeseries.

	get_last_imp_period([all])

	Get the last imported Period for this Station.

	get_neighboor_stids([n, only_real, p_elev, ...])

	Get a list with Station Ids of the nearest neighboor stations.

	get_multi_annual()

	Get the multi annual value(s) for this station.

	get_ma()

	

	get_raster_value(raster)

	

	get_coef(other_stid[, in_db_unit])

	Get the regionalisation coefficients due to the height.

	get_df(kinds[, period, agg_to, nas_allowed, ...])

	Get a timeseries DataFrame from the database.

	get_raw(**kwargs)

	Get the raw timeserie.

	get_qc(**kwargs)

	Get the quality checked timeserie.

	get_dist([period])

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	get_filled([period, with_dist])

	Get the filled timeserie.

	get_adj(**kwargs)

	Get the adjusted timeserie.

	plot([period, kind, agg_to])

	Plot the data of this station.

	
count_holes(weeks=[2, 4, 8, 12, 16, 20, 24], kind='qc', period=(None, None), between_meta_period=True, crop_period=False, **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	weeks (list, optional) – A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kind (str) – The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_period (bool, optional) – Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_period (bool, optional) – should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_raw(only_new=False)

	Download the timeserie from the CDC Server.

This function only returns the timeserie, but is not updating the database.

	Parameters:

	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is False.

	Returns:

	The Timeseries as a DataFrame with a Timestamp Index.

	Return type:

	pandas.DataFrame

	
fillup(period=(None, None), **kwargs)

	Fill up missing data with measurements from nearby stations.

	Parameters:

	
	period (util.TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to gap fill the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	kwargs (dict, optional) – Additional arguments for the fillup function.
e.g. p_elev to consider the elevation to select nearest stations. (only for T and ET)

	
get_adj(**kwargs)

	Get the adjusted timeserie.

The timeserie get adjusted to match the multi-annual value over the given period.
So the yearly variability is kept and only the whole period is adjusted.

The basis for the adjusted timeseries is the filled data and not the richter corrected data,
as the ma values are also uncorrected vallues.

	Returns:

	The adjusted timeserie with the timestamp as index.

	Return type:

	pd.DataFrame

	
get_coef(other_stid, in_db_unit=False)

	Get the regionalisation coefficients due to the height.

Those are the values from the dwd grid, HYRAS or REGNIE grids.

	Parameters:

	
	other_stid (int) – The Station Id of the other station from wich to regionalise for own station.

	in_db_unit (bool, optional) – Should the coefficients be returned in the unit as stored in the database?
This is only relevant for the temperature.
The default is False.

	Returns:

	A list of coefficients.
For T, ET and N-daily only the the yearly coefficient is returned.
For N the winter and summer half yearly coefficient is returned in tuple.
None is returned if either the own or other stations multi-annual value is not available.

	Return type:

	list of floats or None

	
get_df(kinds, period=(None, None), agg_to=None, nas_allowed=True, add_na_share=False, db_unit=False, sql_add_where=None, **kwargs)

	Get a timeseries DataFrame from the database.

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “filled_by”, “filled_share”.
For the precipitation also “qn” and “corr” are valid.
If “filled_by” is given together with an aggregation step, the “filled_by” is replaced by the “filled_share”.
The “filled_share” gives the share of filled values in the aggregation group in percent.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	agg_to (str or None, optional) – Aggregate to a given timespan.
If more than 20% of missing values in the aggregation group, the aggregated value will be None.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is True.

	add_na_share (bool, optional) – Should one or several columns be added to the Dataframe with the share of NAs in the data.
This is especially important, when the stations data get aggregated, because the aggregation doesn’t make sense if there are a lot of NAs in the original data.
If True, one column per asked kind is added with the respective share of NAs, if the aggregation step is not the smallest.
The “kind”_na_share column is in percentage.
The default is False.

	db_unit (bool, optional) – Should the result be in the Database unit.
If False the unit is getting converted to normal unit, like mm or °C.
The numbers are saved as integer in the database and got therefor multiplied by 10 or 100 to get to an integer.
The default is False.

	sql_add_where (str or None, optional) – additional sql where statement to filter the output.
E.g. “EXTRACT(MONTH FROM timestamp) == 2”
The default is None

	Returns:

	The timeserie Dataframe with a DatetimeIndex.

	Return type:

	pandas.DataFrame

	
get_dist(period=(None, None))

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	Parameters:

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	Returns:

	The timeserie for this station and the given period with the station_id and the distance in meters from which the data got filled from.

	Return type:

	pd.DataFrame

	
get_filled(period=(None, None), with_dist=False, **kwargs)

	Get the filled timeserie.

Either only the timeserie is returned or also the id of the station from which the station data got filled, together with the distance to this station in m.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	with_dist (bool, optional) – Should the distance to the stations from which the timeseries got filled be added.
The default is False.

	Returns:

	The filled timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_filled_period(kind, from_meta=False)

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

Computes the period from the timeserie or meta table.

	Parameters:

	
	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	from_meta (bool, optional) – Should the period be from the meta table?
If False: the period is returned from the timeserie. In this case this function is only a wrapper for .get_period_meta.
The default is False.

	Raises:

	
	NotImplementedError – If the given kind is not valid.

	ValueError – If the given kind is not a string.

	Returns:

	A TimestampPeriod of the filled timeserie.
(NaT, NaT) if the timeserie is all empty or not defined.

	Return type:

	util.TimestampPeriod

	
get_geom(format='EWKT', crs=None)

	Get the point geometry of the station.

	Parameters:

	
	format (str or None, optional) – The format of the geometry to return.
Needs to be a format that is understood by Postgresql.
ST_AsXXXXX function needs to exist in postgresql language.
If None, then the binary representation is returned.
the default is “EWKT”.

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	string or bytes representation of the geometry,
depending on the selected format.

	Return type:

	str or bytes

	
get_geom_shp(crs=None)

	Get the geometry of the station as a shapely Point object.

	Parameters:

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	The location of the station as shapely Point.

	Return type:

	shapely.geometries.Point

	
get_last_imp_period(all=False)

	Get the last imported Period for this Station.

	Parameters:

	all (bool, optional) – Should the maximum Timespan for all the last imports be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	(minimal datetime, maximal datetime)

	Return type:

	TimespanPeriod or tuple of datetime.datetime

	
get_ma()

	

	
get_max_period(kinds, nas_allowed=False, **kwargs)

	Get the maximum available period for this stations timeseries.

If nas_allowed is True, then the maximum range of the timeserie is returned.
Else the minimal filled period is returned

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is False.

	Returns:

	The maximum Timestamp Period

	Return type:

	utils.TimestampPeriod

	
get_meta(infos='all')

	Get Information from the meta table.

	Parameters:

	infos (list of str or str, optional) – A list of the information to get from the database.
If “all” then all the information are returned.
The default is “all”.

	Returns:

	dict with the meta information.
The first level has one entry per parameter.
The second level has one entry per information, asked for.
If only one information is asked for, then it is returned as single value and not as subdict.

	Return type:

	dict or int/string

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_multi_annual()

	Get the multi annual value(s) for this station.

	Returns:

	The corresponding multi annual value.
For T en ET the yearly value is returned.
For N the winter and summer half yearly sum is returned in tuple.
The returned unit is mm or °C.

	Return type:

	list or number

	
get_name()

	

	
get_neighboor_stids(n=5, only_real=True, p_elev=None, period=None, **kwargs)

	Get a list with Station Ids of the nearest neighboor stations.

	nint, optional
	The number of stations to return.
If None, then all the possible stations are returned.
The default is 5.

	only_real: bool, optional
	Should only real station get considered?
If false also virtual stations are part of the result.
The default is True.

	p_elevtuple of float or None, optional
	The parameters (P_1, P_2) to weight the height differences between stations.
The elevation difference is considered with the formula from LARSIM (equation 3-18 & 3-19 from the LARSIM manual):
$L_{gewichtet} = L_{horizontal} * (1 + (

	rac{|\delta H|}{P_1})^{P_2})$
	
If None, then the height difference is not considered and only the nearest stations are returned.
literature:

	LARSIM Dokumentation, Stand 06.04.2023, online unter https://www.larsim.info/dokumentation/LARSIM-Dokumentation.pdf

The default is None.

	periodutils.TimestampPeriod or None, optional
	The period for which the nearest neighboors are returned.
The neighboor station needs to have raw data for at least one half of the period.
If None, then the availability of the data is not checked.
The default is None.

	list of int
	A list of station Ids in order of distance.
The closest station is the first in the list.

	
get_period_meta(kind, all=False)

	Get a specific period from the meta information table.

This functions returns the information from the meta table.
In this table there are several periods saved, like the period of the last import.

	Parameters:

	
	kind (str) – The kind of period to return.
Should be one of [‘filled’, ‘raw’, ‘last_imp’].
filled: the maximum filled period of the filled timeserie.
raw: the maximum filled timeperiod of the raw data.
last_imp: the maximum filled timeperiod of the last import.

	all (bool, optional) – Should the maximum Timespan for all the filled periods be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	The TimespanPeriod of the station or of all the stations if all=True.

	Return type:

	TimespanPeriod

	Raises:

	ValueError – If a wrong kind is handed in.

	
get_qc(**kwargs)

	Get the quality checked timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The quality checked timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_raster_value(raster)

	

	
get_raw(**kwargs)

	Get the raw timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The raw timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_zipfiles(only_new=True, ftp_file_list=None)

	Get the zipfiles on the CDC server with the raw data.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	Returns:

	A DataFrame of zipfiles and the corresponding modification time on the CDC server to import.

	Return type:

	pandas.DataFrame or None

	
is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “best”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	Returns:

	True if the last import of the given kind is already treated.

	Return type:

	bool

	
is_real()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is real, false if it is virtual.

	Return type:

	bool

	
is_virtual()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is virtual, false if it is real.

	Return type:

	bool

	
isin_db()

	Check if Station is already in a timeseries table.

	Returns:

	True if Station has a table in DB, no matter if it is filled or not.

	Return type:

	bool

	
isin_ma()

	Check if Station is already in the multi annual table.

	Returns:

	True if Station is in multi annual table.

	Return type:

	bool

	
isin_meta()

	Check if Station is already in the meta table.

	Returns:

	True if Station is in meta table.

	Return type:

	bool

	
last_imp_fillup(_last_imp_period=None)

	Do the gap filling of the last import.

	
last_imp_qc()

	

	
last_imp_quality_check()

	Do the quality check of the last import.

	
plot(period=(None, None), kind='filled', agg_to=None, **kwargs)

	Plot the data of this station.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	kind (str, optional) – The data kind to plot.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.
The default is “filled.

	agg_to (str or None, optional) – Aggregate to a given timespan.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	
quality_check(period=(None, None), **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	period (util.TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	
update_ma(skip_if_exist=True, drop_when_error=True)

	Update the multi annual values in the stations_raster_values table.

Get new values from the raster and put in the table.

	
update_period_meta(kind)

	Update the time period in the meta file.

Compute teh filled period of a timeserie and save in the meta table.

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “corr” are valid.

	
update_raw(only_new=True, ftp_file_list=None, remove_nas=True)

	Download data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	Returns:

	The raw Dataframe of the Stations data.

	Return type:

	pandas.DataFrame

	
class weatherDB.station.StationCanVirtualBase(id, _skip_meta_check=False)

	Bases: StationBase

A class to add the methods for stations that can also be virtual.
Virtual means, that there is no real DWD station with measurements.
But to have data for every parameter at every 10 min precipitation station location, it is necessary to add stations and fill the gaps with data from neighboors.

Create a Station object.

	Parameters:

	
	id (int) – The stations ID.

	_skip_meta_check (bool, optional) – Should the check if the station is in the database meta file get skiped.
Pay attention, when skipping this, because it can lead to problems.
This is for computational reasons, because it makes the initialization faster.
Is used by the stations classes, because the only initialize objects that are in the meta table.
The default is False

	Raises:

	NotImplementedError – _description_

Public Methods:

	isin_meta_n()

	Check if Station is in the precipitation meta table.

	quality_check([period])

	Quality check the raw data for a given period.

Inherited from StationBase

	__init__(id[, _skip_meta_check])

	Create a Station object.

	isin_db()

	Check if Station is already in a timeseries table.

	isin_meta()

	Check if Station is already in the meta table.

	isin_ma()

	Check if Station is already in the multi annual table.

	is_virtual()

	Check if the station is a real station or only a virtual one.

	is_real()

	Check if the station is a real station or only a virtual one.

	is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	update_period_meta(kind)

	Update the time period in the meta file.

	update_ma([skip_if_exist, drop_when_error])

	Update the multi annual values in the stations_raster_values table.

	update_raw([only_new, ftp_file_list, remove_nas])

	Download data from CDC and upload to database.

	get_zipfiles([only_new, ftp_file_list])

	Get the zipfiles on the CDC server with the raw data.

	download_raw([only_new])

	Download the timeserie from the CDC Server.

	quality_check([period])

	Quality check the raw data for a given period.

	fillup([period])

	Fill up missing data with measurements from nearby stations.

	last_imp_quality_check()

	Do the quality check of the last import.

	last_imp_qc()

	

	last_imp_fillup([_last_imp_period])

	Do the gap filling of the last import.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos])

	Get Information from the meta table.

	get_geom([format, crs])

	Get the point geometry of the station.

	get_geom_shp([crs])

	Get the geometry of the station as a shapely Point object.

	get_name()

	

	count_holes([weeks, kind, period, ...])

	Count holes in timeseries depending on there length.

	get_period_meta(kind[, all])

	Get a specific period from the meta information table.

	get_filled_period(kind[, from_meta])

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

	get_max_period(kinds[, nas_allowed])

	Get the maximum available period for this stations timeseries.

	get_last_imp_period([all])

	Get the last imported Period for this Station.

	get_neighboor_stids([n, only_real, p_elev, ...])

	Get a list with Station Ids of the nearest neighboor stations.

	get_multi_annual()

	Get the multi annual value(s) for this station.

	get_ma()

	

	get_raster_value(raster)

	

	get_coef(other_stid[, in_db_unit])

	Get the regionalisation coefficients due to the height.

	get_df(kinds[, period, agg_to, nas_allowed, ...])

	Get a timeseries DataFrame from the database.

	get_raw(**kwargs)

	Get the raw timeserie.

	get_qc(**kwargs)

	Get the quality checked timeserie.

	get_dist([period])

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	get_filled([period, with_dist])

	Get the filled timeserie.

	get_adj(**kwargs)

	Get the adjusted timeserie.

	plot([period, kind, agg_to])

	Plot the data of this station.

	
count_holes(weeks=[2, 4, 8, 12, 16, 20, 24], kind='qc', period=(None, None), between_meta_period=True, crop_period=False, **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	weeks (list, optional) – A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kind (str) – The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_period (bool, optional) – Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_period (bool, optional) – should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_raw(only_new=False)

	Download the timeserie from the CDC Server.

This function only returns the timeserie, but is not updating the database.

	Parameters:

	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is False.

	Returns:

	The Timeseries as a DataFrame with a Timestamp Index.

	Return type:

	pandas.DataFrame

	
fillup(period=(None, None), **kwargs)

	Fill up missing data with measurements from nearby stations.

	Parameters:

	
	period (util.TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to gap fill the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	kwargs (dict, optional) – Additional arguments for the fillup function.
e.g. p_elev to consider the elevation to select nearest stations. (only for T and ET)

	
get_adj(**kwargs)

	Get the adjusted timeserie.

The timeserie is adjusted to the multi annual mean.
So the overall mean of the given period will be the same as the multi annual mean.

	Parameters:

	kwargs (dict, optional) – The keyword arguments are passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”.

	Returns:

	A timeserie with the adjusted data.

	Return type:

	pandas.DataFrame

	
get_coef(other_stid, in_db_unit=False)

	Get the regionalisation coefficients due to the height.

Those are the values from the dwd grid, HYRAS or REGNIE grids.

	Parameters:

	
	other_stid (int) – The Station Id of the other station from wich to regionalise for own station.

	in_db_unit (bool, optional) – Should the coefficients be returned in the unit as stored in the database?
This is only relevant for the temperature.
The default is False.

	Returns:

	A list of coefficients.
For T, ET and N-daily only the the yearly coefficient is returned.
For N the winter and summer half yearly coefficient is returned in tuple.
None is returned if either the own or other stations multi-annual value is not available.

	Return type:

	list of floats or None

	
get_df(kinds, period=(None, None), agg_to=None, nas_allowed=True, add_na_share=False, db_unit=False, sql_add_where=None, **kwargs)

	Get a timeseries DataFrame from the database.

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “filled_by”, “filled_share”.
For the precipitation also “qn” and “corr” are valid.
If “filled_by” is given together with an aggregation step, the “filled_by” is replaced by the “filled_share”.
The “filled_share” gives the share of filled values in the aggregation group in percent.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	agg_to (str or None, optional) – Aggregate to a given timespan.
If more than 20% of missing values in the aggregation group, the aggregated value will be None.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is True.

	add_na_share (bool, optional) – Should one or several columns be added to the Dataframe with the share of NAs in the data.
This is especially important, when the stations data get aggregated, because the aggregation doesn’t make sense if there are a lot of NAs in the original data.
If True, one column per asked kind is added with the respective share of NAs, if the aggregation step is not the smallest.
The “kind”_na_share column is in percentage.
The default is False.

	db_unit (bool, optional) – Should the result be in the Database unit.
If False the unit is getting converted to normal unit, like mm or °C.
The numbers are saved as integer in the database and got therefor multiplied by 10 or 100 to get to an integer.
The default is False.

	sql_add_where (str or None, optional) – additional sql where statement to filter the output.
E.g. “EXTRACT(MONTH FROM timestamp) == 2”
The default is None

	Returns:

	The timeserie Dataframe with a DatetimeIndex.

	Return type:

	pandas.DataFrame

	
get_dist(period=(None, None))

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	Parameters:

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	Returns:

	The timeserie for this station and the given period with the station_id and the distance in meters from which the data got filled from.

	Return type:

	pd.DataFrame

	
get_filled(period=(None, None), with_dist=False, **kwargs)

	Get the filled timeserie.

Either only the timeserie is returned or also the id of the station from which the station data got filled, together with the distance to this station in m.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	with_dist (bool, optional) – Should the distance to the stations from which the timeseries got filled be added.
The default is False.

	Returns:

	The filled timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_filled_period(kind, from_meta=False)

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

Computes the period from the timeserie or meta table.

	Parameters:

	
	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	from_meta (bool, optional) – Should the period be from the meta table?
If False: the period is returned from the timeserie. In this case this function is only a wrapper for .get_period_meta.
The default is False.

	Raises:

	
	NotImplementedError – If the given kind is not valid.

	ValueError – If the given kind is not a string.

	Returns:

	A TimestampPeriod of the filled timeserie.
(NaT, NaT) if the timeserie is all empty or not defined.

	Return type:

	util.TimestampPeriod

	
get_geom(format='EWKT', crs=None)

	Get the point geometry of the station.

	Parameters:

	
	format (str or None, optional) – The format of the geometry to return.
Needs to be a format that is understood by Postgresql.
ST_AsXXXXX function needs to exist in postgresql language.
If None, then the binary representation is returned.
the default is “EWKT”.

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	string or bytes representation of the geometry,
depending on the selected format.

	Return type:

	str or bytes

	
get_geom_shp(crs=None)

	Get the geometry of the station as a shapely Point object.

	Parameters:

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	The location of the station as shapely Point.

	Return type:

	shapely.geometries.Point

	
get_last_imp_period(all=False)

	Get the last imported Period for this Station.

	Parameters:

	all (bool, optional) – Should the maximum Timespan for all the last imports be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	(minimal datetime, maximal datetime)

	Return type:

	TimespanPeriod or tuple of datetime.datetime

	
get_ma()

	

	
get_max_period(kinds, nas_allowed=False, **kwargs)

	Get the maximum available period for this stations timeseries.

If nas_allowed is True, then the maximum range of the timeserie is returned.
Else the minimal filled period is returned

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is False.

	Returns:

	The maximum Timestamp Period

	Return type:

	utils.TimestampPeriod

	
get_meta(infos='all')

	Get Information from the meta table.

	Parameters:

	infos (list of str or str, optional) – A list of the information to get from the database.
If “all” then all the information are returned.
The default is “all”.

	Returns:

	dict with the meta information.
The first level has one entry per parameter.
The second level has one entry per information, asked for.
If only one information is asked for, then it is returned as single value and not as subdict.

	Return type:

	dict or int/string

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_multi_annual()

	Get the multi annual value(s) for this station.

	Returns:

	The corresponding multi annual value.
For T en ET the yearly value is returned.
For N the winter and summer half yearly sum is returned in tuple.
The returned unit is mm or °C.

	Return type:

	list or number

	
get_name()

	

	
get_neighboor_stids(n=5, only_real=True, p_elev=None, period=None, **kwargs)

	Get a list with Station Ids of the nearest neighboor stations.

	nint, optional
	The number of stations to return.
If None, then all the possible stations are returned.
The default is 5.

	only_real: bool, optional
	Should only real station get considered?
If false also virtual stations are part of the result.
The default is True.

	p_elevtuple of float or None, optional
	The parameters (P_1, P_2) to weight the height differences between stations.
The elevation difference is considered with the formula from LARSIM (equation 3-18 & 3-19 from the LARSIM manual):
$L_{gewichtet} = L_{horizontal} * (1 + (

	rac{|\delta H|}{P_1})^{P_2})$
	
If None, then the height difference is not considered and only the nearest stations are returned.
literature:

	LARSIM Dokumentation, Stand 06.04.2023, online unter https://www.larsim.info/dokumentation/LARSIM-Dokumentation.pdf

The default is None.

	periodutils.TimestampPeriod or None, optional
	The period for which the nearest neighboors are returned.
The neighboor station needs to have raw data for at least one half of the period.
If None, then the availability of the data is not checked.
The default is None.

	list of int
	A list of station Ids in order of distance.
The closest station is the first in the list.

	
get_period_meta(kind, all=False)

	Get a specific period from the meta information table.

This functions returns the information from the meta table.
In this table there are several periods saved, like the period of the last import.

	Parameters:

	
	kind (str) – The kind of period to return.
Should be one of [‘filled’, ‘raw’, ‘last_imp’].
filled: the maximum filled period of the filled timeserie.
raw: the maximum filled timeperiod of the raw data.
last_imp: the maximum filled timeperiod of the last import.

	all (bool, optional) – Should the maximum Timespan for all the filled periods be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	The TimespanPeriod of the station or of all the stations if all=True.

	Return type:

	TimespanPeriod

	Raises:

	ValueError – If a wrong kind is handed in.

	
get_qc(**kwargs)

	Get the quality checked timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The quality checked timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_raster_value(raster)

	

	
get_raw(**kwargs)

	Get the raw timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The raw timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_zipfiles(only_new=True, ftp_file_list=None)

	Get the zipfiles on the CDC server with the raw data.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	Returns:

	A DataFrame of zipfiles and the corresponding modification time on the CDC server to import.

	Return type:

	pandas.DataFrame or None

	
is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “best”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	Returns:

	True if the last import of the given kind is already treated.

	Return type:

	bool

	
is_real()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is real, false if it is virtual.

	Return type:

	bool

	
is_virtual()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is virtual, false if it is real.

	Return type:

	bool

	
isin_db()

	Check if Station is already in a timeseries table.

	Returns:

	True if Station has a table in DB, no matter if it is filled or not.

	Return type:

	bool

	
isin_ma()

	Check if Station is already in the multi annual table.

	Returns:

	True if Station is in multi annual table.

	Return type:

	bool

	
isin_meta()

	Check if Station is already in the meta table.

	Returns:

	True if Station is in meta table.

	Return type:

	bool

	
isin_meta_n()

	Check if Station is in the precipitation meta table.

	Returns:

	True if Station is in the precipitation meta table.

	Return type:

	bool

	
last_imp_fillup(_last_imp_period=None)

	Do the gap filling of the last import.

	
last_imp_qc()

	

	
last_imp_quality_check()

	Do the quality check of the last import.

	
plot(period=(None, None), kind='filled', agg_to=None, **kwargs)

	Plot the data of this station.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	kind (str, optional) – The data kind to plot.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.
The default is “filled.

	agg_to (str or None, optional) – Aggregate to a given timespan.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	
quality_check(period=(None, None), **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	period (util.TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	
update_ma(skip_if_exist=True, drop_when_error=True)

	Update the multi annual values in the stations_raster_values table.

Get new values from the raster and put in the table.

	
update_period_meta(kind)

	Update the time period in the meta file.

Compute teh filled period of a timeserie and save in the meta table.

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “corr” are valid.

	
update_raw(only_new=True, ftp_file_list=None, remove_nas=True)

	Download data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	Returns:

	The raw Dataframe of the Stations data.

	Return type:

	pandas.DataFrame

	
class weatherDB.station.StationTETBase(id, _skip_meta_check=False)

	Bases: StationCanVirtualBase

A base class for T and ET.

This class adds methods that are only used by temperatur and evapotranspiration stations.

Create a Station object.

	Parameters:

	
	id (int) – The stations ID.

	_skip_meta_check (bool, optional) – Should the check if the station is in the database meta file get skiped.
Pay attention, when skipping this, because it can lead to problems.
This is for computational reasons, because it makes the initialization faster.
Is used by the stations classes, because the only initialize objects that are in the meta table.
The default is False

	Raises:

	NotImplementedError – _description_

Public Methods:

	get_neighboor_stids([p_elev])

	Get the 5 nearest stations to this station.

	fillup([p_elev])

	Set the default P values.

	get_adj(**kwargs)

	Get the adjusted timeserie.

Inherited from StationCanVirtualBase

	isin_meta_n()

	Check if Station is in the precipitation meta table.

	quality_check([period])

	Quality check the raw data for a given period.

Inherited from StationBase

	__init__(id[, _skip_meta_check])

	Create a Station object.

	isin_db()

	Check if Station is already in a timeseries table.

	isin_meta()

	Check if Station is already in the meta table.

	isin_ma()

	Check if Station is already in the multi annual table.

	is_virtual()

	Check if the station is a real station or only a virtual one.

	is_real()

	Check if the station is a real station or only a virtual one.

	is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	update_period_meta(kind)

	Update the time period in the meta file.

	update_ma([skip_if_exist, drop_when_error])

	Update the multi annual values in the stations_raster_values table.

	update_raw([only_new, ftp_file_list, remove_nas])

	Download data from CDC and upload to database.

	get_zipfiles([only_new, ftp_file_list])

	Get the zipfiles on the CDC server with the raw data.

	download_raw([only_new])

	Download the timeserie from the CDC Server.

	quality_check([period])

	Quality check the raw data for a given period.

	fillup([period])

	Fill up missing data with measurements from nearby stations.

	last_imp_quality_check()

	Do the quality check of the last import.

	last_imp_qc()

	

	last_imp_fillup([_last_imp_period])

	Do the gap filling of the last import.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos])

	Get Information from the meta table.

	get_geom([format, crs])

	Get the point geometry of the station.

	get_geom_shp([crs])

	Get the geometry of the station as a shapely Point object.

	get_name()

	

	count_holes([weeks, kind, period, ...])

	Count holes in timeseries depending on there length.

	get_period_meta(kind[, all])

	Get a specific period from the meta information table.

	get_filled_period(kind[, from_meta])

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

	get_max_period(kinds[, nas_allowed])

	Get the maximum available period for this stations timeseries.

	get_last_imp_period([all])

	Get the last imported Period for this Station.

	get_neighboor_stids([n, only_real, p_elev, ...])

	Get a list with Station Ids of the nearest neighboor stations.

	get_multi_annual()

	Get the multi annual value(s) for this station.

	get_ma()

	

	get_raster_value(raster)

	

	get_coef(other_stid[, in_db_unit])

	Get the regionalisation coefficients due to the height.

	get_df(kinds[, period, agg_to, nas_allowed, ...])

	Get a timeseries DataFrame from the database.

	get_raw(**kwargs)

	Get the raw timeserie.

	get_qc(**kwargs)

	Get the quality checked timeserie.

	get_dist([period])

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	get_filled([period, with_dist])

	Get the filled timeserie.

	get_adj(**kwargs)

	Get the adjusted timeserie.

	plot([period, kind, agg_to])

	Plot the data of this station.

	
count_holes(weeks=[2, 4, 8, 12, 16, 20, 24], kind='qc', period=(None, None), between_meta_period=True, crop_period=False, **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	weeks (list, optional) – A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kind (str) – The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_period (bool, optional) – Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_period (bool, optional) – should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_raw(only_new=False)

	Download the timeserie from the CDC Server.

This function only returns the timeserie, but is not updating the database.

	Parameters:

	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is False.

	Returns:

	The Timeseries as a DataFrame with a Timestamp Index.

	Return type:

	pandas.DataFrame

	
fillup(p_elev=(250, 1.5), **kwargs)

	Set the default P values. See _get_sql_near_median for more informations.

	
get_adj(**kwargs)

	Get the adjusted timeserie.

The timeserie get adjusted to match the multi-annual value over the given period.
So the yearly variability is kept and only the whole period is adjusted.

	Returns:

	The adjusted timeserie with the timestamp as index.

	Return type:

	pd.DataFrame

	
get_coef(other_stid, in_db_unit=False)

	Get the regionalisation coefficients due to the height.

Those are the values from the dwd grid, HYRAS or REGNIE grids.

	Parameters:

	
	other_stid (int) – The Station Id of the other station from wich to regionalise for own station.

	in_db_unit (bool, optional) – Should the coefficients be returned in the unit as stored in the database?
This is only relevant for the temperature.
The default is False.

	Returns:

	A list of coefficients.
For T, ET and N-daily only the the yearly coefficient is returned.
For N the winter and summer half yearly coefficient is returned in tuple.
None is returned if either the own or other stations multi-annual value is not available.

	Return type:

	list of floats or None

	
get_df(kinds, period=(None, None), agg_to=None, nas_allowed=True, add_na_share=False, db_unit=False, sql_add_where=None, **kwargs)

	Get a timeseries DataFrame from the database.

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “filled_by”, “filled_share”.
For the precipitation also “qn” and “corr” are valid.
If “filled_by” is given together with an aggregation step, the “filled_by” is replaced by the “filled_share”.
The “filled_share” gives the share of filled values in the aggregation group in percent.

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	agg_to (str or None, optional) – Aggregate to a given timespan.
If more than 20% of missing values in the aggregation group, the aggregated value will be None.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is True.

	add_na_share (bool, optional) – Should one or several columns be added to the Dataframe with the share of NAs in the data.
This is especially important, when the stations data get aggregated, because the aggregation doesn’t make sense if there are a lot of NAs in the original data.
If True, one column per asked kind is added with the respective share of NAs, if the aggregation step is not the smallest.
The “kind”_na_share column is in percentage.
The default is False.

	db_unit (bool, optional) – Should the result be in the Database unit.
If False the unit is getting converted to normal unit, like mm or °C.
The numbers are saved as integer in the database and got therefor multiplied by 10 or 100 to get to an integer.
The default is False.

	sql_add_where (str or None, optional) – additional sql where statement to filter the output.
E.g. “EXTRACT(MONTH FROM timestamp) == 2”
The default is None

	Returns:

	The timeserie Dataframe with a DatetimeIndex.

	Return type:

	pandas.DataFrame

	
get_dist(period=(None, None))

	Get the timeserie with the infomation from which station the data got filled and the corresponding distance to this station.

	Parameters:

	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	Returns:

	The timeserie for this station and the given period with the station_id and the distance in meters from which the data got filled from.

	Return type:

	pd.DataFrame

	
get_filled(period=(None, None), with_dist=False, **kwargs)

	Get the filled timeserie.

Either only the timeserie is returned or also the id of the station from which the station data got filled, together with the distance to this station in m.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeserie.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	with_dist (bool, optional) – Should the distance to the stations from which the timeseries got filled be added.
The default is False.

	Returns:

	The filled timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_filled_period(kind, from_meta=False)

	Get the min and max Timestamp for which there is data in the corresponding timeserie.

Computes the period from the timeserie or meta table.

	Parameters:

	
	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	from_meta (bool, optional) – Should the period be from the meta table?
If False: the period is returned from the timeserie. In this case this function is only a wrapper for .get_period_meta.
The default is False.

	Raises:

	
	NotImplementedError – If the given kind is not valid.

	ValueError – If the given kind is not a string.

	Returns:

	A TimestampPeriod of the filled timeserie.
(NaT, NaT) if the timeserie is all empty or not defined.

	Return type:

	util.TimestampPeriod

	
get_geom(format='EWKT', crs=None)

	Get the point geometry of the station.

	Parameters:

	
	format (str or None, optional) – The format of the geometry to return.
Needs to be a format that is understood by Postgresql.
ST_AsXXXXX function needs to exist in postgresql language.
If None, then the binary representation is returned.
the default is “EWKT”.

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	string or bytes representation of the geometry,
depending on the selected format.

	Return type:

	str or bytes

	
get_geom_shp(crs=None)

	Get the geometry of the station as a shapely Point object.

	Parameters:

	crs (str, int or None, optional) – If None, then the geometry is returned in WGS84 (EPSG:4326).
If string, then it should be one of “WGS84” or “UTM”.
If int, then it should be the EPSG code.

	Returns:

	The location of the station as shapely Point.

	Return type:

	shapely.geometries.Point

	
get_last_imp_period(all=False)

	Get the last imported Period for this Station.

	Parameters:

	all (bool, optional) – Should the maximum Timespan for all the last imports be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	(minimal datetime, maximal datetime)

	Return type:

	TimespanPeriod or tuple of datetime.datetime

	
get_ma()

	

	
get_max_period(kinds, nas_allowed=False, **kwargs)

	Get the maximum available period for this stations timeseries.

If nas_allowed is True, then the maximum range of the timeserie is returned.
Else the minimal filled period is returned

	Parameters:

	
	kinds (str or list of str) – The data kinds to update.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is False.

	Returns:

	The maximum Timestamp Period

	Return type:

	utils.TimestampPeriod

	
get_meta(infos='all')

	Get Information from the meta table.

	Parameters:

	infos (list of str or str, optional) – A list of the information to get from the database.
If “all” then all the information are returned.
The default is “all”.

	Returns:

	dict with the meta information.
The first level has one entry per parameter.
The second level has one entry per information, asked for.
If only one information is asked for, then it is returned as single value and not as subdict.

	Return type:

	dict or int/string

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_multi_annual()

	Get the multi annual value(s) for this station.

	Returns:

	The corresponding multi annual value.
For T en ET the yearly value is returned.
For N the winter and summer half yearly sum is returned in tuple.
The returned unit is mm or °C.

	Return type:

	list or number

	
get_name()

	

	
get_neighboor_stids(p_elev=(250, 1.5), **kwargs)

	Get the 5 nearest stations to this station.

	Parameters:

	p_elev (tuple, optional) – In Larsim those parameters are defined as $P_1 = 500$ and $P_2 = 1$.
Stoelzle et al. (2016) found that $P_1 = 100$ and $P_2 = 4$ is better for Baden-Würtemberg to consider the quick changes in topographie.
For all of germany, those parameter values are giving too much weight to the elevation difference, which can result in getting neighboor stations from the border of the Tschec Republic for the Feldberg station. Therefor the values $P_1 = 250$ and $P_2 = 1.5$ are used as default values.
literature:

	Stoelzle, Michael & Weiler, Markus & Steinbrich, Andreas. (2016) Starkregengefährdung in Baden-Württemberg – von der Methodenentwicklung zur Starkregenkartierung. Tag der Hydrologie.

	LARSIM Dokumentation, Stand 06.04.2023, online unter https://www.larsim.info/dokumentation/LARSIM-Dokumentation.pdf

The default is (250, 1.5).

	Returns:

	description

	Return type:

	type

	
get_period_meta(kind, all=False)

	Get a specific period from the meta information table.

This functions returns the information from the meta table.
In this table there are several periods saved, like the period of the last import.

	Parameters:

	
	kind (str) – The kind of period to return.
Should be one of [‘filled’, ‘raw’, ‘last_imp’].
filled: the maximum filled period of the filled timeserie.
raw: the maximum filled timeperiod of the raw data.
last_imp: the maximum filled timeperiod of the last import.

	all (bool, optional) – Should the maximum Timespan for all the filled periods be returned.
If False only the period for this station is returned.
The default is False.

	Returns:

	The TimespanPeriod of the station or of all the stations if all=True.

	Return type:

	TimespanPeriod

	Raises:

	ValueError – If a wrong kind is handed in.

	
get_qc(**kwargs)

	Get the quality checked timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The quality checked timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_raster_value(raster)

	

	
get_raw(**kwargs)

	Get the raw timeserie.

	Parameters:

	kwargs (dict, optional) – The keyword arguments get passed to the get_df function.
Possible parameters are “period”, “agg_to” or “nas_allowed”

	Returns:

	The raw timeserie for this station and the given period.

	Return type:

	pd.DataFrame

	
get_zipfiles(only_new=True, ftp_file_list=None)

	Get the zipfiles on the CDC server with the raw data.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	Returns:

	A DataFrame of zipfiles and the corresponding modification time on the CDC server to import.

	Return type:

	pandas.DataFrame or None

	
is_last_imp_done(kind)

	Is the last import for the given kind already worked in?

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”, “best”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	Returns:

	True if the last import of the given kind is already treated.

	Return type:

	bool

	
is_real()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is real, false if it is virtual.

	Return type:

	bool

	
is_virtual()

	Check if the station is a real station or only a virtual one.

Real means that the DWD is measuring here.
Virtual means, that there are no measurements here, but the station got created to have timeseries for every parameter for every precipitation station.

	Returns:

	true if the station is virtual, false if it is real.

	Return type:

	bool

	
isin_db()

	Check if Station is already in a timeseries table.

	Returns:

	True if Station has a table in DB, no matter if it is filled or not.

	Return type:

	bool

	
isin_ma()

	Check if Station is already in the multi annual table.

	Returns:

	True if Station is in multi annual table.

	Return type:

	bool

	
isin_meta()

	Check if Station is already in the meta table.

	Returns:

	True if Station is in meta table.

	Return type:

	bool

	
isin_meta_n()

	Check if Station is in the precipitation meta table.

	Returns:

	True if Station is in the precipitation meta table.

	Return type:

	bool

	
last_imp_fillup(_last_imp_period=None)

	Do the gap filling of the last import.

	
last_imp_qc()

	

	
last_imp_quality_check()

	Do the quality check of the last import.

	
plot(period=(None, None), kind='filled', agg_to=None, **kwargs)

	Plot the data of this station.

	Parameters:

	
	period (TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	kind (str, optional) – The data kind to plot.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
For the precipitation also “qn” and “corr” are valid.
The default is “filled.

	agg_to (str or None, optional) – Aggregate to a given timespan.
Can be anything smaller than the maximum timespan of the saved data.
If a Timeperiod smaller than the saved data is given, than the maximum possible timeperiod is returned.
For T and ET it can be “month”, “year”.
For N it can also be “hour”.
If None than the maximum timeperiod is taken.
The default is None.

	
quality_check(period=(None, None), **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	period (util.TimestampPeriod or (tuple or list of datetime.datetime or None), optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	
update_ma(skip_if_exist=True, drop_when_error=True)

	Update the multi annual values in the stations_raster_values table.

Get new values from the raster and put in the table.

	
update_period_meta(kind)

	Update the time period in the meta file.

Compute teh filled period of a timeserie and save in the meta table.

	Parameters:

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “corr” are valid.

	
update_raw(only_new=True, ftp_file_list=None, remove_nas=True)

	Download data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	ftp_file_list (list of (strings, datetime), optional) – A list of files on the FTP server together with their modification time.
If None, then the list is fetched from the server.
The default is None

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	Returns:

	The raw Dataframe of the Stations data.

	Return type:

	pandas.DataFrame

 stations

stations

StationsN

	
class weatherDB.stations.StationsN

	Bases: StationsBase

A class to work with and download 10 minutes precipitation data for several stations.

Public Methods:

	update_richter_class([stids, do_mp])

	Update the Richter exposition class.

	richter_correct([stids])

	Richter correct the filled data.

	last_imp_corr([stids, do_mp])

	Richter correct the filled data for the last imported period.

	update([only_new])

	Make a complete update of the stations.

Inherited from StationsBase

	__init__()

	

	download_meta()

	Download the meta file(s) from the CDC server.

	update_meta()

	Update the meta table by comparing to the CDC server.

	update_period_meta([stids])

	Update the period in the meta table of the raw data.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos, stids, only_real])

	Get the meta Dataframe from the Database.

	get_stations([only_real, stids])

	Get a list with all the stations as Station-objects.

	count_holes([stids])

	Count holes in timeseries depending on there length.

	update_raw([only_new, only_real, stids, ...])

	Download all stations data from CDC and upload to database.

	last_imp_quality_check([stids, do_mp])

	Do the quality check of the last import.

	last_imp_fillup([stids, do_mp])

	Do the gap filling of the last import.

	quality_check([period, only_real, stids, do_mp])

	Quality check the raw data for a given period.

	update_ma([stids, do_mp])

	Update the multi annual values for the stations.

	fillup([only_real, stids, do_mp])

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

	update([only_new])

	Make a complete update of the stations.

	get_df(stids, **kwargs)

	Get a DataFrame with the corresponding data.

	
count_holes(stids='all', **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – This is a list of parameters, that is supported by the StationBase.count_holes method.
E.G.:
weeks : list, optional

A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kindstr
	The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	periodTimestampPeriod or (tuple or list of datetime.datetime or None), optional
	The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_periodbool, optional
	Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_periodbool, optional
	should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_meta()

	Download the meta file(s) from the CDC server.

	Returns:

	The meta file from the CDC server.
If there are several meta files on the server, they are joined together.

	Return type:

	geopandas.GeoDataFrame

	
fillup(only_real=False, stids='all', do_mp=False, **kwargs)

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

	Parameters:

	
	only_real (bool, optional) – Whether only real stations are computed or also virtual ones.
True: only stations with own data are returned.
The default is True.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
get_df(stids, **kwargs)

	Get a DataFrame with the corresponding data.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (optional keyword arguments) – Those keyword arguments are passed to the get_df function of the station class.
can be period, agg_to, kinds

	Returns:

	A DataFrame with the timeseries for the selected stations, kind(s) and the given period.
If multiple columns are selected, the columns in this DataFrame is a MultiIndex with the station IDs as first level and the kind as second level.

	Return type:

	pd.Dataframe

	
get_meta(infos=['station_id', 'filled_from', 'filled_until', 'geometry'], stids='all', only_real=True)

	Get the meta Dataframe from the Database.

	Parameters:

	
	infos (list or str, optional) – A list of information from the meta file to return
If “all” than all possible columns are returned, but only one geometry column.
The default is: [“Station_id”, “filled_from”, “filled_until”, “geometry”]

	only_real (bool, optional) – Whether only real stations are returned or also virtual ones.
True: only stations with own data are returned.
The default is True.

	Returns:

	The meta DataFrame.

	Return type:

	pandas.DataFrame or geopandas.GeoDataFrae

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_stations(only_real=True, stids='all')

	Get a list with all the stations as Station-objects.

	Parameters:

	
	only_real (bool, optional) – Whether only real stations are returned or also virtual ones.
True: only stations with own data are returned.
The default is True.

	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	Returns:

	returns a list with the corresponding station objects.

	Return type:

	Station-object

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
last_imp_corr(stids='all', do_mp=False, **kwargs)

	Richter correct the filled data for the last imported period.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
last_imp_fillup(stids='all', do_mp=False, **kwargs)

	Do the gap filling of the last import.

	Parameters:

	
	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
last_imp_quality_check(stids='all', do_mp=False, **kwargs)

	Do the quality check of the last import.

	Parameters:

	
	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
quality_check(period=(None, None), only_real=True, stids='all', do_mp=False, **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	
	period (tuple or list of datetime.datetime or None, optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
richter_correct(stids='all', **kwargs)

	Richter correct the filled data.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update(only_new=True, **kwargs)

	Make a complete update of the stations.

Does the update_raw, quality check, fillup and richter correction of the stations.

	Parameters:

	only_new (bool, optional) – Should a only new values be computed?
If False: The stations are updated for the whole possible period.
If True, the stations are only updated for new values.
The default is True.

	
update_ma(stids='all', do_mp=False, **kwargs)

	Update the multi annual values for the stations.

Get a multi annual value from the corresponding raster and save to the multi annual table in the database.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_meta()

	Update the meta table by comparing to the CDC server.

The “von_datum” and “bis_datum” is ignored because it is better to set this by the filled period of the stations in the database.
Often the CDC period is not correct.

	
update_period_meta(stids='all')

	Update the period in the meta table of the raw data.

	Parameters:

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_raw(only_new=True, only_real=True, stids='all', remove_nas=True, do_mp=True, **kwargs)

	Download all stations data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	only_real (bool, optional) – Whether only real stations are tried to download.
True: only stations with a date in raw_from in meta are downloaded.
The default is True.

	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is True.

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_richter_class(stids='all', do_mp=True, **kwargs)

	Update the Richter exposition class.

Get the value from the raster, compare with the richter categories and save to the database.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The keyword arguments to be handed to the station.StationN.update_richter_class method.

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

StationsT

	
class weatherDB.stations.StationsT

	Bases: StationsTETBase

A class to work with and download temperature data for several stations.

Public Methods:

Inherited from StationsTETBase

	fillup([only_real, stids])

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

Inherited from StationsBase

	__init__()

	

	download_meta()

	Download the meta file(s) from the CDC server.

	update_meta()

	Update the meta table by comparing to the CDC server.

	update_period_meta([stids])

	Update the period in the meta table of the raw data.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos, stids, only_real])

	Get the meta Dataframe from the Database.

	get_stations([only_real, stids])

	Get a list with all the stations as Station-objects.

	count_holes([stids])

	Count holes in timeseries depending on there length.

	update_raw([only_new, only_real, stids, ...])

	Download all stations data from CDC and upload to database.

	last_imp_quality_check([stids, do_mp])

	Do the quality check of the last import.

	last_imp_fillup([stids, do_mp])

	Do the gap filling of the last import.

	quality_check([period, only_real, stids, do_mp])

	Quality check the raw data for a given period.

	update_ma([stids, do_mp])

	Update the multi annual values for the stations.

	fillup([only_real, stids, do_mp])

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

	update([only_new])

	Make a complete update of the stations.

	get_df(stids, **kwargs)

	Get a DataFrame with the corresponding data.

	
count_holes(stids='all', **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – This is a list of parameters, that is supported by the StationBase.count_holes method.
E.G.:
weeks : list, optional

A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kindstr
	The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	periodTimestampPeriod or (tuple or list of datetime.datetime or None), optional
	The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_periodbool, optional
	Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_periodbool, optional
	should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_meta()

	Download the meta file(s) from the CDC server.

	Returns:

	The meta file from the CDC server.
If there are several meta files on the server, they are joined together.

	Return type:

	geopandas.GeoDataFrame

	
fillup(only_real=False, stids='all')

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

	Parameters:

	
	only_real (bool, optional) – Whether only real stations are computed or also virtual ones.
True: only stations with own data are returned.
The default is True.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
get_df(stids, **kwargs)

	Get a DataFrame with the corresponding data.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (optional keyword arguments) – Those keyword arguments are passed to the get_df function of the station class.
can be period, agg_to, kinds

	Returns:

	A DataFrame with the timeseries for the selected stations, kind(s) and the given period.
If multiple columns are selected, the columns in this DataFrame is a MultiIndex with the station IDs as first level and the kind as second level.

	Return type:

	pd.Dataframe

	
get_meta(infos=['station_id', 'filled_from', 'filled_until', 'geometry'], stids='all', only_real=True)

	Get the meta Dataframe from the Database.

	Parameters:

	
	infos (list or str, optional) – A list of information from the meta file to return
If “all” than all possible columns are returned, but only one geometry column.
The default is: [“Station_id”, “filled_from”, “filled_until”, “geometry”]

	only_real (bool, optional) – Whether only real stations are returned or also virtual ones.
True: only stations with own data are returned.
The default is True.

	Returns:

	The meta DataFrame.

	Return type:

	pandas.DataFrame or geopandas.GeoDataFrae

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_stations(only_real=True, stids='all')

	Get a list with all the stations as Station-objects.

	Parameters:

	
	only_real (bool, optional) – Whether only real stations are returned or also virtual ones.
True: only stations with own data are returned.
The default is True.

	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	Returns:

	returns a list with the corresponding station objects.

	Return type:

	Station-object

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
last_imp_fillup(stids='all', do_mp=False, **kwargs)

	Do the gap filling of the last import.

	Parameters:

	
	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
last_imp_quality_check(stids='all', do_mp=False, **kwargs)

	Do the quality check of the last import.

	Parameters:

	
	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
quality_check(period=(None, None), only_real=True, stids='all', do_mp=False, **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	
	period (tuple or list of datetime.datetime or None, optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
update(only_new=True, **kwargs)

	Make a complete update of the stations.

Does the update_raw, quality check and fillup of the stations.

	Parameters:

	only_new (bool, optional) – Should a only new values be computed?
If False: The stations are updated for the whole possible period.
If True, the stations are only updated for new values.
The default is True.

	
update_ma(stids='all', do_mp=False, **kwargs)

	Update the multi annual values for the stations.

Get a multi annual value from the corresponding raster and save to the multi annual table in the database.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_meta()

	Update the meta table by comparing to the CDC server.

The “von_datum” and “bis_datum” is ignored because it is better to set this by the filled period of the stations in the database.
Often the CDC period is not correct.

	
update_period_meta(stids='all')

	Update the period in the meta table of the raw data.

	Parameters:

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_raw(only_new=True, only_real=True, stids='all', remove_nas=True, do_mp=True, **kwargs)

	Download all stations data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	only_real (bool, optional) – Whether only real stations are tried to download.
True: only stations with a date in raw_from in meta are downloaded.
The default is True.

	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is True.

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

StationsET

	
class weatherDB.stations.StationsET

	Bases: StationsTETBase

A class to work with and download potential Evapotranspiration (VPGB) data for several stations.

Public Methods:

Inherited from StationsTETBase

	fillup([only_real, stids])

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

Inherited from StationsBase

	__init__()

	

	download_meta()

	Download the meta file(s) from the CDC server.

	update_meta()

	Update the meta table by comparing to the CDC server.

	update_period_meta([stids])

	Update the period in the meta table of the raw data.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos, stids, only_real])

	Get the meta Dataframe from the Database.

	get_stations([only_real, stids])

	Get a list with all the stations as Station-objects.

	count_holes([stids])

	Count holes in timeseries depending on there length.

	update_raw([only_new, only_real, stids, ...])

	Download all stations data from CDC and upload to database.

	last_imp_quality_check([stids, do_mp])

	Do the quality check of the last import.

	last_imp_fillup([stids, do_mp])

	Do the gap filling of the last import.

	quality_check([period, only_real, stids, do_mp])

	Quality check the raw data for a given period.

	update_ma([stids, do_mp])

	Update the multi annual values for the stations.

	fillup([only_real, stids, do_mp])

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

	update([only_new])

	Make a complete update of the stations.

	get_df(stids, **kwargs)

	Get a DataFrame with the corresponding data.

	
count_holes(stids='all', **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – This is a list of parameters, that is supported by the StationBase.count_holes method.
E.G.:
weeks : list, optional

A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kindstr
	The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	periodTimestampPeriod or (tuple or list of datetime.datetime or None), optional
	The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_periodbool, optional
	Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_periodbool, optional
	should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_meta()

	Download the meta file(s) from the CDC server.

	Returns:

	The meta file from the CDC server.
If there are several meta files on the server, they are joined together.

	Return type:

	geopandas.GeoDataFrame

	
fillup(only_real=False, stids='all')

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

	Parameters:

	
	only_real (bool, optional) – Whether only real stations are computed or also virtual ones.
True: only stations with own data are returned.
The default is True.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
get_df(stids, **kwargs)

	Get a DataFrame with the corresponding data.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (optional keyword arguments) – Those keyword arguments are passed to the get_df function of the station class.
can be period, agg_to, kinds

	Returns:

	A DataFrame with the timeseries for the selected stations, kind(s) and the given period.
If multiple columns are selected, the columns in this DataFrame is a MultiIndex with the station IDs as first level and the kind as second level.

	Return type:

	pd.Dataframe

	
get_meta(infos=['station_id', 'filled_from', 'filled_until', 'geometry'], stids='all', only_real=True)

	Get the meta Dataframe from the Database.

	Parameters:

	
	infos (list or str, optional) – A list of information from the meta file to return
If “all” than all possible columns are returned, but only one geometry column.
The default is: [“Station_id”, “filled_from”, “filled_until”, “geometry”]

	only_real (bool, optional) – Whether only real stations are returned or also virtual ones.
True: only stations with own data are returned.
The default is True.

	Returns:

	The meta DataFrame.

	Return type:

	pandas.DataFrame or geopandas.GeoDataFrae

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_stations(only_real=True, stids='all')

	Get a list with all the stations as Station-objects.

	Parameters:

	
	only_real (bool, optional) – Whether only real stations are returned or also virtual ones.
True: only stations with own data are returned.
The default is True.

	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	Returns:

	returns a list with the corresponding station objects.

	Return type:

	Station-object

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
last_imp_fillup(stids='all', do_mp=False, **kwargs)

	Do the gap filling of the last import.

	Parameters:

	
	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
last_imp_quality_check(stids='all', do_mp=False, **kwargs)

	Do the quality check of the last import.

	Parameters:

	
	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
quality_check(period=(None, None), only_real=True, stids='all', do_mp=False, **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	
	period (tuple or list of datetime.datetime or None, optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
update(only_new=True, **kwargs)

	Make a complete update of the stations.

Does the update_raw, quality check and fillup of the stations.

	Parameters:

	only_new (bool, optional) – Should a only new values be computed?
If False: The stations are updated for the whole possible period.
If True, the stations are only updated for new values.
The default is True.

	
update_ma(stids='all', do_mp=False, **kwargs)

	Update the multi annual values for the stations.

Get a multi annual value from the corresponding raster and save to the multi annual table in the database.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_meta()

	Update the meta table by comparing to the CDC server.

The “von_datum” and “bis_datum” is ignored because it is better to set this by the filled period of the stations in the database.
Often the CDC period is not correct.

	
update_period_meta(stids='all')

	Update the period in the meta table of the raw data.

	Parameters:

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_raw(only_new=True, only_real=True, stids='all', remove_nas=True, do_mp=True, **kwargs)

	Download all stations data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	only_real (bool, optional) – Whether only real stations are tried to download.
True: only stations with a date in raw_from in meta are downloaded.
The default is True.

	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is True.

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

StationsND

	
class weatherDB.stations.StationsND

	Bases: StationsBase

A class to work with and download daily precipitation data for several stations.

Those stations data are only downloaded to do some quality checks on the 10 minutes data.
Therefor there is no special quality check and richter correction done on this data.
If you want daily precipitation data, better use the 10 minutes station class (StationN) and aggregate to daily values.

Public Methods:

Inherited from StationsBase

	__init__()

	

	download_meta()

	Download the meta file(s) from the CDC server.

	update_meta()

	Update the meta table by comparing to the CDC server.

	update_period_meta([stids])

	Update the period in the meta table of the raw data.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos, stids, only_real])

	Get the meta Dataframe from the Database.

	get_stations([only_real, stids])

	Get a list with all the stations as Station-objects.

	count_holes([stids])

	Count holes in timeseries depending on there length.

	update_raw([only_new, only_real, stids, ...])

	Download all stations data from CDC and upload to database.

	last_imp_quality_check([stids, do_mp])

	Do the quality check of the last import.

	last_imp_fillup([stids, do_mp])

	Do the gap filling of the last import.

	quality_check([period, only_real, stids, do_mp])

	Quality check the raw data for a given period.

	update_ma([stids, do_mp])

	Update the multi annual values for the stations.

	fillup([only_real, stids, do_mp])

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

	update([only_new])

	Make a complete update of the stations.

	get_df(stids, **kwargs)

	Get a DataFrame with the corresponding data.

	
count_holes(stids='all', **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – This is a list of parameters, that is supported by the StationBase.count_holes method.
E.G.:
weeks : list, optional

A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kindstr
	The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	periodTimestampPeriod or (tuple or list of datetime.datetime or None), optional
	The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_periodbool, optional
	Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_periodbool, optional
	should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_meta()

	Download the meta file(s) from the CDC server.

	Returns:

	The meta file from the CDC server.
If there are several meta files on the server, they are joined together.

	Return type:

	geopandas.GeoDataFrame

	
fillup(only_real=False, stids='all', do_mp=False, **kwargs)

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

	Parameters:

	
	only_real (bool, optional) – Whether only real stations are computed or also virtual ones.
True: only stations with own data are returned.
The default is True.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
get_df(stids, **kwargs)

	Get a DataFrame with the corresponding data.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (optional keyword arguments) – Those keyword arguments are passed to the get_df function of the station class.
can be period, agg_to, kinds

	Returns:

	A DataFrame with the timeseries for the selected stations, kind(s) and the given period.
If multiple columns are selected, the columns in this DataFrame is a MultiIndex with the station IDs as first level and the kind as second level.

	Return type:

	pd.Dataframe

	
get_meta(infos=['station_id', 'filled_from', 'filled_until', 'geometry'], stids='all', only_real=True)

	Get the meta Dataframe from the Database.

	Parameters:

	
	infos (list or str, optional) – A list of information from the meta file to return
If “all” than all possible columns are returned, but only one geometry column.
The default is: [“Station_id”, “filled_from”, “filled_until”, “geometry”]

	only_real (bool, optional) – Whether only real stations are returned or also virtual ones.
True: only stations with own data are returned.
The default is True.

	Returns:

	The meta DataFrame.

	Return type:

	pandas.DataFrame or geopandas.GeoDataFrae

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_stations(only_real=True, stids='all')

	Get a list with all the stations as Station-objects.

	Parameters:

	
	only_real (bool, optional) – Whether only real stations are returned or also virtual ones.
True: only stations with own data are returned.
The default is True.

	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	Returns:

	returns a list with the corresponding station objects.

	Return type:

	Station-object

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
last_imp_fillup(stids='all', do_mp=False, **kwargs)

	Do the gap filling of the last import.

	Parameters:

	
	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
last_imp_quality_check(stids='all', do_mp=False, **kwargs)

	Do the quality check of the last import.

	Parameters:

	
	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
quality_check(period=(None, None), only_real=True, stids='all', do_mp=False, **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	
	period (tuple or list of datetime.datetime or None, optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
update(only_new=True, **kwargs)

	Make a complete update of the stations.

Does the update_raw, quality check and fillup of the stations.

	Parameters:

	only_new (bool, optional) – Should a only new values be computed?
If False: The stations are updated for the whole possible period.
If True, the stations are only updated for new values.
The default is True.

	
update_ma(stids='all', do_mp=False, **kwargs)

	Update the multi annual values for the stations.

Get a multi annual value from the corresponding raster and save to the multi annual table in the database.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_meta()

	Update the meta table by comparing to the CDC server.

The “von_datum” and “bis_datum” is ignored because it is better to set this by the filled period of the stations in the database.
Often the CDC period is not correct.

	
update_period_meta(stids='all')

	Update the period in the meta table of the raw data.

	Parameters:

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_raw(only_new=True, only_real=True, stids='all', remove_nas=True, do_mp=True, **kwargs)

	Download all stations data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	only_real (bool, optional) – Whether only real stations are tried to download.
True: only stations with a date in raw_from in meta are downloaded.
The default is True.

	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is True.

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

GroupStations

	
class weatherDB.stations.GroupStations

	Bases: object

A class to group all possible parameters of all the stations.

Public Methods:

	__init__()

	

	get_valid_stids()

	

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([paras, stids])

	Get the meta Dataframe from the Database.

	get_para_stations([paras])

	Get a list with all the multi parameter stations as stations.Station{parameter}-objects.

	get_group_stations([stids])

	Get a list with all the stations as station.GroupStation-objects.

	create_ts(dir[, period, kinds, stids, ...])

	Download and create the weather tables as csv files.

	create_roger_ts(dir[, period, stids, kind, ...])

	Create the timeserie files for roger as csv.

	
create_roger_ts(dir, period=(None, None), stids='all', kind='best', r_r0=1, add_t_min=False, add_t_max=False, do_toolbox_format=False, **kwargs)

	Create the timeserie files for roger as csv.

This is only a wrapper function for create_ts with some standard settings.

	Parameters:

	
	dir (pathlib like object or zipfile.ZipFile) – The directory or Zipfile to store the timeseries in.
If a zipfile is given a folder with the stations ID is added to the filepath.

	period (TimestampPeriod like object, optional) – The period for which to get the timeseries.
If (None, None) is entered, then the maximal possible period is computed.
The default is (None, None)

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kind (str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	r_r0 (int or float or None or pd.Series or list, optional) – Should the ET timeserie contain a column with R_R0.
If None, then no column is added.
If int, then a R/R0 column is appended with this number as standard value.
If list of int or floats, then the list should have the same length as the ET-timeserie and is appended to the Timeserie.
If pd.Series, then the index should be a timestamp index. The series is then joined to the ET timeserie.
The default is 1.

	add_t_min (bool, optional) – Should the minimal temperature value get added?
The default is False.

	add_t_max (bool, optional) – Should the maximal temperature value get added?
The default is False.

	do_toolbox_format (bool, optional) – Should the timeseries be saved in the RoGeR toolbox format? (have a look at the RoGeR examples in https://github.com/Hydrology-IFH/roger)
The default is False.

	**kwargs – additional parameters for GroupStation.create_ts

	Raises:

	Warning – If there are NAs in the timeseries or the period got changed.

	
create_ts(dir, period=(None, None), kinds='best', stids='all', agg_to='10 min', r_r0=None, split_date=False, nas_allowed=True, add_na_share=False, add_t_min=False, add_t_max=False, **kwargs)

	Download and create the weather tables as csv files.

	Parameters:

	
	dir (path-like object) – The directory where to save the tables.
If the directory is a ZipFile, then the output will get zipped into this.

	period (TimestampPeriod like object, optional) – The period for which to get the timeseries.
If (None, None) is entered, then the maximal possible period is computed.
The default is (None, None)

	kinds (str or list of str) – The data kind to look for filled period.
Must be a column in the timeseries DB.
Must be one of “raw”, “qc”, “filled”, “adj”.
If “best” is given, then depending on the parameter of the station the best kind is selected.
For Precipitation this is “corr” and for the other this is “filled”.
For the precipitation also “qn” and “corr” are valid.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	agg_to (str, optional) – To what aggregation level should the timeseries get aggregated to.
The minimum aggregation for Temperatur and ET is daily and for the precipitation it is 10 minutes.
If a smaller aggregation is selected the minimum possible aggregation for the respective parameter is returned.
So if 10 minutes is selected, than precipitation is returned in 10 minuets and T and ET as daily.
The default is “10 min”.

	r_r0 (int or float or None or pd.Series or list, optional) – Should the ET timeserie contain a column with R/R0.
If None, then no column is added.
If int, then a R/R0 column is appended with this number as standard value.
If list of int or floats, then the list should have the same length as the ET-timeserie and is appended to the Timeserie.
If pd.Series, then the index should be a timestamp index. The series is then joined to the ET timeserie.
The default is None.

	split_date (bool, optional) – Should the timestamp get splitted into parts, so one column for year, one for month etc.?
If False the timestamp is saved in one column as string.

	nas_allowed (bool, optional) – Should NAs be allowed?
If True, then the maximum possible period is returned, even if there are NAs in the timeserie.
If False, then the minimal filled period is returned.
The default is True.

	add_na_share (bool, optional) – Should one or several columns be added to the Dataframe with the share of NAs in the data.
This is especially important, when the stations data get aggregated, because the aggregation doesn’t make sense if there are a lot of NAs in the original data.
If True, one column per asked kind is added with the respective share of NAs, if the aggregation step is not the smallest.
The “kind”_na_share column is in percentage.
The default is False.

	add_t_min (bool, optional) – Should the minimal temperature value get added?
The default is False.

	add_t_max (bool, optional) – Should the maximal temperature value get added?
The default is False.

	**kwargs – additional parameters for GroupStation.create_ts

	
get_group_stations(stids='all', **kwargs)

	Get a list with all the stations as station.GroupStation-objects.

	Parameters:

	
	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	**kwargs (optional) – The keyword arguments are handed to the creation of the single GroupStation objects.
Can be e.g. “error_if_missing”.

	Returns:

	returns a list with the corresponding station objects.

	Return type:

	Station-object

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
get_meta(paras='all', stids='all', **kwargs)

	Get the meta Dataframe from the Database.

	Parameters:

	
	paras (list or str, optional) – The parameters for which to get the information.
If “all” then all the available parameters are requested.
The default is “all”.

	stids (string or list of int, optional) – The Stations to return the meta information for.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	**kwargs (dict, optional) – The keyword arguments are passed to the station.GroupStation().get_meta method.
From there it is passed to the single station get_meta method.
Can be e.g. “infos”

	Returns:

	
	dict of pandas.DataFrame or geopandas.GeoDataFrame

	or pandas.DataFrame or geopandas.GeoDataFrame – The meta DataFrame.
If several parameters are asked for, then a dict with an entry per parameter is returned.

	Raises:

	
	ValueError – If the given stids (Station_IDs) are not all valid.

	ValueError – If the given paras are not all valid.

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_para_stations(paras='all')

	Get a list with all the multi parameter stations as stations.Station{parameter}-objects.

	Parameters:

	paras (list or str, optional) – The parameters for which to get the objects.
If “all” then all the available parameters are requested.
The default is “all”.

	Returns:

	returns a list with the corresponding station objects.

	Return type:

	Station-object

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
get_valid_stids()

	

StationsBase…

Those are the base station classes on which the real station classes above depend on.
None of them is working on its own, because the class variables are not yet set correctly.

	
class weatherDB.stations.StationsBase

	Bases: object

Public Methods:

	__init__()

	

	download_meta()

	Download the meta file(s) from the CDC server.

	update_meta()

	Update the meta table by comparing to the CDC server.

	update_period_meta([stids])

	Update the period in the meta table of the raw data.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos, stids, only_real])

	Get the meta Dataframe from the Database.

	get_stations([only_real, stids])

	Get a list with all the stations as Station-objects.

	count_holes([stids])

	Count holes in timeseries depending on there length.

	update_raw([only_new, only_real, stids, ...])

	Download all stations data from CDC and upload to database.

	last_imp_quality_check([stids, do_mp])

	Do the quality check of the last import.

	last_imp_fillup([stids, do_mp])

	Do the gap filling of the last import.

	quality_check([period, only_real, stids, do_mp])

	Quality check the raw data for a given period.

	update_ma([stids, do_mp])

	Update the multi annual values for the stations.

	fillup([only_real, stids, do_mp])

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

	update([only_new])

	Make a complete update of the stations.

	get_df(stids, **kwargs)

	Get a DataFrame with the corresponding data.

	
count_holes(stids='all', **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – This is a list of parameters, that is supported by the StationBase.count_holes method.
E.G.:
weeks : list, optional

A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kindstr
	The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	periodTimestampPeriod or (tuple or list of datetime.datetime or None), optional
	The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_periodbool, optional
	Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_periodbool, optional
	should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_meta()

	Download the meta file(s) from the CDC server.

	Returns:

	The meta file from the CDC server.
If there are several meta files on the server, they are joined together.

	Return type:

	geopandas.GeoDataFrame

	
fillup(only_real=False, stids='all', do_mp=False, **kwargs)

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

	Parameters:

	
	only_real (bool, optional) – Whether only real stations are computed or also virtual ones.
True: only stations with own data are returned.
The default is True.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
get_df(stids, **kwargs)

	Get a DataFrame with the corresponding data.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (optional keyword arguments) – Those keyword arguments are passed to the get_df function of the station class.
can be period, agg_to, kinds

	Returns:

	A DataFrame with the timeseries for the selected stations, kind(s) and the given period.
If multiple columns are selected, the columns in this DataFrame is a MultiIndex with the station IDs as first level and the kind as second level.

	Return type:

	pd.Dataframe

	
get_meta(infos=['station_id', 'filled_from', 'filled_until', 'geometry'], stids='all', only_real=True)

	Get the meta Dataframe from the Database.

	Parameters:

	
	infos (list or str, optional) – A list of information from the meta file to return
If “all” than all possible columns are returned, but only one geometry column.
The default is: [“Station_id”, “filled_from”, “filled_until”, “geometry”]

	only_real (bool, optional) – Whether only real stations are returned or also virtual ones.
True: only stations with own data are returned.
The default is True.

	Returns:

	The meta DataFrame.

	Return type:

	pandas.DataFrame or geopandas.GeoDataFrae

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_stations(only_real=True, stids='all')

	Get a list with all the stations as Station-objects.

	Parameters:

	
	only_real (bool, optional) – Whether only real stations are returned or also virtual ones.
True: only stations with own data are returned.
The default is True.

	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	Returns:

	returns a list with the corresponding station objects.

	Return type:

	Station-object

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
last_imp_fillup(stids='all', do_mp=False, **kwargs)

	Do the gap filling of the last import.

	Parameters:

	
	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
last_imp_quality_check(stids='all', do_mp=False, **kwargs)

	Do the quality check of the last import.

	Parameters:

	
	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
quality_check(period=(None, None), only_real=True, stids='all', do_mp=False, **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	
	period (tuple or list of datetime.datetime or None, optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
update(only_new=True, **kwargs)

	Make a complete update of the stations.

Does the update_raw, quality check and fillup of the stations.

	Parameters:

	only_new (bool, optional) – Should a only new values be computed?
If False: The stations are updated for the whole possible period.
If True, the stations are only updated for new values.
The default is True.

	
update_ma(stids='all', do_mp=False, **kwargs)

	Update the multi annual values for the stations.

Get a multi annual value from the corresponding raster and save to the multi annual table in the database.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_meta()

	Update the meta table by comparing to the CDC server.

The “von_datum” and “bis_datum” is ignored because it is better to set this by the filled period of the stations in the database.
Often the CDC period is not correct.

	
update_period_meta(stids='all')

	Update the period in the meta table of the raw data.

	Parameters:

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_raw(only_new=True, only_real=True, stids='all', remove_nas=True, do_mp=True, **kwargs)

	Download all stations data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	only_real (bool, optional) – Whether only real stations are tried to download.
True: only stations with a date in raw_from in meta are downloaded.
The default is True.

	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is True.

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
class weatherDB.stations.StationsTETBase

	Bases: StationsBase

Public Methods:

	fillup([only_real, stids])

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

Inherited from StationsBase

	__init__()

	

	download_meta()

	Download the meta file(s) from the CDC server.

	update_meta()

	Update the meta table by comparing to the CDC server.

	update_period_meta([stids])

	Update the period in the meta table of the raw data.

	get_meta_explanation([infos])

	Get the explanations of the available meta fields.

	get_meta([infos, stids, only_real])

	Get the meta Dataframe from the Database.

	get_stations([only_real, stids])

	Get a list with all the stations as Station-objects.

	count_holes([stids])

	Count holes in timeseries depending on there length.

	update_raw([only_new, only_real, stids, ...])

	Download all stations data from CDC and upload to database.

	last_imp_quality_check([stids, do_mp])

	Do the quality check of the last import.

	last_imp_fillup([stids, do_mp])

	Do the gap filling of the last import.

	quality_check([period, only_real, stids, do_mp])

	Quality check the raw data for a given period.

	update_ma([stids, do_mp])

	Update the multi annual values for the stations.

	fillup([only_real, stids, do_mp])

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

	update([only_new])

	Make a complete update of the stations.

	get_df(stids, **kwargs)

	Get a DataFrame with the corresponding data.

	
count_holes(stids='all', **kwargs)

	Count holes in timeseries depending on there length.

	Parameters:

	
	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – This is a list of parameters, that is supported by the StationBase.count_holes method.
E.G.:
weeks : list, optional

A list of hole length to count.
Every hole longer than the duration of weeks specified is counted.
The default is [2, 4, 8, 12, 16, 20, 24]

	kindstr
	The kind of the timeserie to analyze.
Should be one of [‘raw’, ‘qc’, ‘filled’].
For N also “corr” is possible.
Normally only “raw” and “qc” make sense, because the other timeseries should not have holes.

	periodTimestampPeriod or (tuple or list of datetime.datetime or None), optional
	The minimum and maximum Timestamp for which to analyze the timeseries.
If None is given, the maximum and minimal possible Timestamp is taken.
The default is (None, None).

	between_meta_periodbool, optional
	Only check between the respective period that is defined in the meta table.
If “qc” is chosen as kind, then the “raw” meta period is taken.
The default is True.

	crop_periodbool, optional
	should the period get cropped to the maximum filled period.
This will result in holes being ignored when they are at the end or at the beginning of the timeserie.
If period = (None, None) is given, then this parameter is set to True.
The default is False.

	Returns:

	A Pandas Dataframe, with station_id as index and one column per week.
The numbers in the table are the amount of NA-periods longer than the respective amount of weeks.

	Return type:

	pandas.DataFrame

	Raises:

	ValueError – If the input parameters were not correct.

	
download_meta()

	Download the meta file(s) from the CDC server.

	Returns:

	The meta file from the CDC server.
If there are several meta files on the server, they are joined together.

	Return type:

	geopandas.GeoDataFrame

	
fillup(only_real=False, stids='all')

	Fill up the quality checked data with data from nearby stations to get complete timeseries.

	Parameters:

	
	only_real (bool, optional) – Whether only real stations are computed or also virtual ones.
True: only stations with own data are returned.
The default is True.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
get_df(stids, **kwargs)

	Get a DataFrame with the corresponding data.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (optional keyword arguments) – Those keyword arguments are passed to the get_df function of the station class.
can be period, agg_to, kinds

	Returns:

	A DataFrame with the timeseries for the selected stations, kind(s) and the given period.
If multiple columns are selected, the columns in this DataFrame is a MultiIndex with the station IDs as first level and the kind as second level.

	Return type:

	pd.Dataframe

	
get_meta(infos=['station_id', 'filled_from', 'filled_until', 'geometry'], stids='all', only_real=True)

	Get the meta Dataframe from the Database.

	Parameters:

	
	infos (list or str, optional) – A list of information from the meta file to return
If “all” than all possible columns are returned, but only one geometry column.
The default is: [“Station_id”, “filled_from”, “filled_until”, “geometry”]

	only_real (bool, optional) – Whether only real stations are returned or also virtual ones.
True: only stations with own data are returned.
The default is True.

	Returns:

	The meta DataFrame.

	Return type:

	pandas.DataFrame or geopandas.GeoDataFrae

	
classmethod get_meta_explanation(infos='all')

	Get the explanations of the available meta fields.

	Parameters:

	infos (list or string, optional) – The infos you wish to get an explanation for.
If “all” then all the available information get returned.
The default is “all”

	Returns:

	a pandas Series with the information names as index and the explanation as values.

	Return type:

	pd.Series

	
get_stations(only_real=True, stids='all')

	Get a list with all the stations as Station-objects.

	Parameters:

	
	only_real (bool, optional) – Whether only real stations are returned or also virtual ones.
True: only stations with own data are returned.
The default is True.

	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	Returns:

	returns a list with the corresponding station objects.

	Return type:

	Station-object

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
last_imp_fillup(stids='all', do_mp=False, **kwargs)

	Do the gap filling of the last import.

	Parameters:

	
	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
last_imp_quality_check(stids='all', do_mp=False, **kwargs)

	Do the quality check of the last import.

	Parameters:

	
	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
quality_check(period=(None, None), only_real=True, stids='all', do_mp=False, **kwargs)

	Quality check the raw data for a given period.

	Parameters:

	
	period (tuple or list of datetime.datetime or None, optional) – The minimum and maximum Timestamp for which to get the timeseries.
If None is given, the maximum or minimal possible Timestamp is taken.
The default is (None, None).

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	
update(only_new=True, **kwargs)

	Make a complete update of the stations.

Does the update_raw, quality check and fillup of the stations.

	Parameters:

	only_new (bool, optional) – Should a only new values be computed?
If False: The stations are updated for the whole possible period.
If True, the stations are only updated for new values.
The default is True.

	
update_ma(stids='all', do_mp=False, **kwargs)

	Update the multi annual values for the stations.

Get a multi annual value from the corresponding raster and save to the multi annual table in the database.

	Parameters:

	
	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is False.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_meta()

	Update the meta table by comparing to the CDC server.

The “von_datum” and “bis_datum” is ignored because it is better to set this by the filled period of the stations in the database.
Often the CDC period is not correct.

	
update_period_meta(stids='all')

	Update the period in the meta table of the raw data.

	Parameters:

	stids (string or list of int, optional) – The Stations for which to compute.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

	
update_raw(only_new=True, only_real=True, stids='all', remove_nas=True, do_mp=True, **kwargs)

	Download all stations data from CDC and upload to database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True

	only_real (bool, optional) – Whether only real stations are tried to download.
True: only stations with a date in raw_from in meta are downloaded.
The default is True.

	stids (string or list of int, optional) – The Stations to return.
Can either be “all”, for all possible stations
or a list with the Station IDs.
The default is “all”.

	do_mp (bool, optional) – Should the method be done in multiprocessing mode?
If False the methods will be called in threading mode.
Multiprocessing needs more memory and a bit more initiating time. Therefor it is only usefull for methods with a lot of computation effort in the python code.
If the most computation of a method is done in the postgresql database, then threading is enough to speed the process up.
The default is True.

	remove_nas (bool, optional) – Remove the NAs from the downloaded data before updating it to the database.
This has computational advantages.
The default is True.

	kwargs (dict, optional) – The additional keyword arguments for the _run_method method

	Raises:

	ValueError – If the given stids (Station_IDs) are not all valid.

 broker

broker

Broker

	
class weatherDB.broker.Broker

	Bases: object

A class to manage and update the database.

Can get used to update all the stations and parameters at once.

This class is only working with super user privileges.

Public Methods:

	__init__()

	

	update_raw([only_new, paras])

	Update the raw data from the DWD-CDC server to the database.

	update_meta([paras])

	Update the meta file from the CDC Server to the Database.

	update_ma([paras])

	Update the multi-annual data from raster to table.

	update_period_meta([paras])

	Update the periods in the meta table.

	quality_check([paras, with_fillup_nd])

	Do the quality check on the stations raw data.

	last_imp_quality_check([paras, with_fillup_nd])

	Quality check the last imported data.

	fillup([paras])

	Fillup the timeseries.

	last_imp_fillup([paras])

	Fillup the last imported data.

	richter_correct()

	Richter correct all of the precipitation data.

	last_imp_corr()

	Richter correct the last imported precipitation data.

	update_db([paras])

	The regular Update of the database.

	initiate_db()

	Initiate the Database.

	vacuum([do_analyze])

	

	get_setting(key)

	Get a specific settings value.

	set_setting(key, value)

	Set a specific setting.

	get_db_version()

	Get the package version that the databases state is at.

	set_db_version([version])

	Set the package version that the databases state is at.

	set_is_broker_active(is_active)

	Set the state of the broker.

	get_is_broker_active()

	Get the state of the broker.

	check_is_broker_active()

	Check if another broker instance is active and if so raise an error.

	
check_is_broker_active()

	Check if another broker instance is active and if so raise an error.

	Raises:

	RuntimeError – If the broker is not active.

	
fillup(paras=['n', 't', 'et'])

	Fillup the timeseries.

	Parameters:

	paras (list of str, optional) – The parameters for which to do the actions.
Can be one, some or all of [“n_d”, “n”, “t”, “et”].
The default is [“n_d”, “n”, “t”, “et”].

	
get_db_version()

	Get the package version that the databases state is at.

	Returns:

	The version of the database.

	Return type:

	version

	
get_is_broker_active()

	Get the state of the broker.

	Returns:

	Whether the broker is active.

	Return type:

	bool

	
get_setting(key)

	Get a specific settings value.

	Parameters:

	key (str) – The key of the setting.

	Returns:

	value – The version of the database.

	Return type:

	str

	
initiate_db()

	Initiate the Database.

Downloads all the data from the CDC server for the first time.
Updates the multi-annual data and the richter-class for all the stations.
Quality checks and fills up the timeseries.

	
last_imp_corr()

	Richter correct the last imported precipitation data.

	
last_imp_fillup(paras=['n', 't', 'et'])

	Fillup the last imported data.

	Parameters:

	paras (list of str, optional) – The parameters for which to do the actions.
Can be one, some or all of [“n_d”, “n”, “t”, “et”].
The default is [“n_d”, “n”, “t”, “et”].

	
last_imp_quality_check(paras=['n', 't', 'et'], with_fillup_nd=True)

	Quality check the last imported data.

Also fills up the daily precipitation data if the 10 minute precipitation data should get quality checked.

	Parameters:

	
	paras (list of str, optional) – The parameters for which to do the actions.
Can be one, some or all of [“n”, “t”, “et”].
The default is [“n”, “t”, “et”].

	with_fillup_nd (bool, optional) – Should the daily precipitation data get filled up if the 10 minute precipitation data gets quality checked.
The default is True.

	
quality_check(paras=['n', 't', 'et'], with_fillup_nd=True)

	Do the quality check on the stations raw data.

	Parameters:

	
	paras (list of str, optional) – The parameters for which to do the actions.
Can be one, some or all of [“n”, “t”, “et”].
The default is [“n”, “t”, “et”].

	with_fillup_nd (bool, optional) – Should the daily precipitation data get filled up if the 10 minute precipitation data gets quality checked.
The default is True.

	
richter_correct()

	Richter correct all of the precipitation data.

	
set_db_version(version=<Version('0.0.40')>)

	Set the package version that the databases state is at.

	Parameters:

	version (pv.Version, optional) – The Version of the python package
The default is the version of this package.

	
set_is_broker_active(is_active: bool)

	Set the state of the broker.

	Parameters:

	is_active (bool) – Whether the broker is active.

	
set_setting(key: str, value: str)

	Set a specific setting.

	Parameters:

	
	key (str) – The key of the setting.

	value (str) – The value of the setting.

	
update_db(paras=['n_d', 'n', 't', 'et'])

	The regular Update of the database.

Downloads new data.
Quality checks the newly imported data.
Fills up the newly imported data.

	Parameters:

	paras (list of str, optional) – The parameters for which to do the actions.
Can be one, some or all of [“n_d”, “n”, “t”, “et”].
The default is [“n_d”, “n”, “t”, “et”].

	
update_ma(paras=['n_d', 'n', 't', 'et'])

	Update the multi-annual data from raster to table.

	Parameters:

	paras (list of str, optional) – The parameters for which to do the actions.
Can be one, some or all of [“n_d”, “n”, “t”, “et”].
The default is [“n_d”, “n”, “t”, “et”].

	
update_meta(paras=['n_d', 'n', 't', 'et'])

	Update the meta file from the CDC Server to the Database.

	Parameters:

	paras (list of str, optional) – The parameters for which to do the actions.
Can be one, some or all of [“n_d”, “n”, “t”, “et”].
The default is [“n_d”, “n”, “t”, “et”].

	
update_period_meta(paras=['n_d', 'n', 't', 'et'])

	Update the periods in the meta table.

	Parameters:

	paras (list of str, optional) – The parameters for which to do the actions.
Can be one, some or all of [“n_d”, “n”, “t”, “et”].
The default is [“n_d”, “n”, “t”, “et”].

	
update_raw(only_new=True, paras=['n_d', 'n', 't', 'et'])

	Update the raw data from the DWD-CDC server to the database.

	Parameters:

	
	only_new (bool, optional) – Get only the files that are not yet in the database?
If False all the available files are loaded again.
The default is True.

	paras (list of str, optional) – The parameters for which to do the actions.
Can be one, some or all of [“n_d”, “n”, “t”, “et”].
The default is [“n_d”, “n”, “t”, “et”].

	
vacuum(do_analyze=True)

	

 lib package

lib package

utils

Some utilities functions and classes that are used in the module.

	
class weatherDB.lib.utils.TimestampPeriod(start, end, tzinfo='UTC')

	Bases: object

A class to save a Timespan with a minimal and maximal Timestamp.

Initiate a TimestampPeriod.

	Parameters:

	
	start (pd.Timestamp or similar) – The start of the Period.

	end (pd.Timestamp or similar) – The end of the Period.

	tzinfo (str or datetime.timezone object or None, optional) – The timezone to set to the timestamps.
If the timestamps already have a timezone they will get converted.
If None, then the timezone is not changed or set.
The default is “UTC”.

	
contains(other)

	Does this TimestampPeriod contain another TimestampPeriod?

	Parameters:

	other (Timestampperiod or tuple of 2 Timestamp or Timestamp strings) – The other Timestamp to test against.
Test if this TimestampPeriod contains the other.

	Returns:

	True if this TimestampPeriod contains the other.
Meaning that the start is smaller or equal than the others starts
and the end is higher than the others end.

	Return type:

	bool

	
copy()

	Copy this TimestampPeriod.

	Returns:

	a new TimestampPeriod object that is equal to this one.

	Return type:

	TimestampPeriod

	
expand_to_timestamp()

	

	
get_interval()

	Get the interval of the TimestampPeriod.

	Returns:

	The interval of this TimestampPeriod.
E.G. Timedelta(2 days 12:30:12)

	Return type:

	pd.Timedelta

	
get_middle()

	Get the middle Timestamp of the TimestampPeriod.

	Returns:

	The middle Timestamp of this TimestampPeriod.

	Return type:

	Timestamp

	
get_period()

	

	
get_sql_format_dict(format="'%Y%m%d %H:%M'")

	Get the dictionary to use in sql queries.

	Parameters:

	format (str, optional) – The Timestamp-format to use.
The Default is “’%Y%m%d %H:%M’”

	Returns:

	a dictionary with 2 keys (min_tstp, max_tstp) and the corresponding Timestamp as formated string.

	Return type:

	dict

	
has_NaT()

	Has the TimestampPeriod at least one NaT.

This means that the start or end is not given.
Normally this should never happen, because it makes no sense.

	Returns:

	True if the TimestampPeriod has at least on NaT.
False if the TimestampPeriod has at least a start or a end.

	Return type:

	bool

	
has_only_NaT()

	Has the TimestampPeriod only NaT, meaning is empty.

This means that the start and end is not given.

	Returns:

	True if the TimestampPeriod is empty.
False if the TimestampPeriod has a start and an end.

	Return type:

	bool

	
inside(other)

	Is the TimestampPeriod inside another TimestampPeriod?

	Parameters:

	other (Timestampperiod or tuple of 2 Timestamp or Timestamp strings) – The other Timestamp to test against.
Test if this TimestampPeriod is inside the other.

	Returns:

	True if this TimestampPeriod is inside the other.
Meaning that the start is higher or equal than the others starts
and the end is smaller than the others end.

	Return type:

	bool

	
is_empty()

	Is the TimestampPeriod empty.

This means that the start and end is not given.

	Returns:

	True if the TimestampPeriod is empty.
False if the TimestampPeriod has a start and an end.

	Return type:

	bool

	
strftime(format='%Y-%m-%d %H:%M:%S')

	Convert the TimestampPeriod to a list of strings.

Formates the Timestamp as a string.

	Parameters:

	format (str, optional) – The Timestamp-format to use.
The Default is “%Y-%m-%d %H:%M:%S”

	Returns:

	A list of the start and end of the TimestampPeriod as formated string.

	Return type:

	list of 2 strings

	
union(other, how='inner')

	Unite 2 TimestampPeriods to one.

Compares the Periods and computes a new one.

	Parameters:

	
	other (TimestampPeriod) – The other TimestampPeriod with whome to compare.

	how (str, optional) – How to compare the 2 TimestampPeriods.
Can be “inner” or “outer”.
“inner”: the maximal Timespan for both is computed.
“outer”: The minimal Timespan for both is computed.
The default is “inner”.

	Returns:

	A new TimespanPeriod object uniting both TimestampPeriods.

	Return type:

	TimestampPeriod

	
weatherDB.lib.utils.get_cdc_file_list(ftp_folders)

	

	
weatherDB.lib.utils.get_ftp_file_list(ftp_conn, ftp_folders)

	Get a list of files in the folders with their modification dates.

	Parameters:

	
	ftp_conn (ftplib.FTP) – Ftp connection.

	ftp_folders (list of str or pathlike object) – The directories on the ftp server to look for files.

	Returns:

	A list of Tuples. Every tuple stands for one file.
The tuple consists of (filepath, modification date).

	Return type:

	list of tuples of strs

max_fun

	import_DWD
	dwd_id_to_str()

	get_dwd_data()

	get_dwd_file()

	get_dwd_meta()

 import_DWD

import_DWD

A collection of functions to import data from the DWD-CDC Server.

	
weatherDB.lib.max_fun.import_DWD.dwd_id_to_str(id)

	Convert a station id to normal DWD format as str.

	Parameters:

	id (int or str) – The id of the station.

	Returns:

	string of normal DWD Station id.

	Return type:

	str

	
weatherDB.lib.max_fun.import_DWD.get_dwd_data(station_id, ftp_folder)

	Get the weather data for one station from the DWD server.

	Parameters:

	
	station_id (str or int) – Number of the station to get the weather data from.

	ftp_folder (str) – the base folder where to look for the stations_id file.
e.g. ftp_folder = “climate_environment/CDC/observations_germany/climate/hourly/precipitation/historical/”.
If the parent folder, where “recent”/”historical” folder is inside, both the historical and recent data gets merged.

	Returns:

	The DataFrame of the selected file in the zip folder.

	Return type:

	pandas.DataFrame

	
weatherDB.lib.max_fun.import_DWD.get_dwd_file(zip_filepath)

	Get a DataFrame from one single (zip-)file from the DWD FTP server.

	Parameters:

	zip_filepath (str) – Path to the file on the server. e.g.

	”/climate_environment/CDC/observations_germany/climate/10_minutes/air_temperature/recent/10minutenwerte_TU_00044_akt.zip”

	”/climate_environment/CDC/derived_germany/soil/daily/historical/derived_germany_soil_daily_historical_73.txt.gz”

	Returns:

	The DataFrame of the selected file in the zip folder.

	Return type:

	pandas.DataFrame

	
weatherDB.lib.max_fun.import_DWD.get_dwd_meta(ftp_folder, min_years=0, max_hole_d=9999)

	Get the meta file from the ftp_folder on the DWD server.

Downloads the meta file of a given folder.
Corrects the meta file of missing files. So if no file for the station is
in the folder the meta entry gets deleted.
Reset “von_datum” in meta file if there is a biger gap than max_hole_d.
Delets entries with less years than min_years.

	Parameters:

	
	ftp_folder (str) – The path to the directory where to search for the meta file.
e.g. “climate_environment/CDC/observations_germany/climate/hourly/precipitation/recent/”.

	min_years (int, optional) – filter the list of stations by a minimum amount of years,
that they have data for. 0 if the data should not get filtered.
Only works if the meta file has a timerange defined,
e.g. in “observations”.
The default is 0.

	max_hole_d (int) – The maximum amount of days missing in the data allowed.
If there are several files for one station and the time hole is bigger
than this value, the older “von_datum” is overwritten
in the meta GeoDataFrame.
The default is 2.

	Returns:

	a GeoDataFrame of the meta file

	Return type:

	geopandas.GeoDataFrame

 Change-log

Change-log

Version 0.0.40

	change roger_toolbox format to keep minute and hour values even if daily aggregation

Version 0.0.39

	add the RoGeR Toolbox format as timeseries format. See https://github.com/Hydrology-IFH/roger for more specifications on the format

	only insert needed download time if DB_ENG is super user

	add possibility to change the column names and filenames of written out weather timeserires

Version 0.0.38

	fix problem when updating the Richter correction to only a period.
Previously the Richter correction did only work, when applied to the whole period (period=(None,None)).
When a smaller period was selected, everything outside of this period got set to NULL.
This problem existed since Version 0.0.36

	update pattern to find meta file, DWD has a second file in kl daily folder, having “mn4” in name

Version 0.0.37

	create_ts: skip period check if already done in GroupStation or GroupStations -> previously this got checked 3 times

	add functionality to StationsBase.get_df to get multiple columns

	fix error in richter_correct from previous version

Version 0.0.36

	throw error if Richter correction is done on empty filled timeserie

	add test for filled daily values before adjusting the 10 minute values in the fillup

	fix errors in fillup for Temperature stations

	set autocommit for _drop method

	richter_correct: only update corr when new values -> way faster

	only give aggregated value if at least 80% data is available

Version 0.0.35

	set filled_by for T stations default to NULL not [NULL] -> works better with other methods

	change date parsing for read dwd function, to work with pandas version >2.0

Version 0.0.34

	StationsBase.get_meta: strip whitespace in str columns

	add min/max-tresholds for T and ET

	add -9999 as possible NA value for DWD data

Version 0.0.33

	change quality control of T- & ET-Stations -> add inversion consideration for stations above 800m altitude
Those stations values are only sorted out in winter if their difference to the median neighbor station is negative (lower limit)

	change quality control of T and ET -> the values are now getting compared to the median of 5 neighbors, not the mean

	change fillup method: has now the possibility to take the median of multiple neighboring stations to fillup. This possibility is now used for Temperature stations, where 5 neighboring stations are considered.

Version 0.0.32

	add elevation consideration for the selection of neighboring stations, based on LARSIM formula for the quality_check and fillup procedure of T and ET. So not only the closest stations are selected but sometimes also a station that is further away, but has les difference in height.

	get neighboring stations for T and ET quality check for full years, to always have around 5 neighboring stations

	fix problem in get_multi_annual for T Station if no ma found

	fix error because timeseries did only get created when, station T or ET is in meta_n table, even if they exist in meta_t or meta_et. So e.g a T Station exists in meta table because of own data, but is not added because no P station is there.

Version 0.0.31

	only compare to neighboring stations if at least 2 stations have data in the quality check of T and ET

	add settings to the database and broker now updates the whole database if a new version is loaded

	stop broker execution if another broker instance is activly updating the database

Version 0.0.30

	fix MAJOR error in Temperature quality check: The coefficient did not get converted to the database unit.
This had as a consequence, that the neighboring values did not get regionalised correctly to the checked station. So if the neighboring station has big difference in the multi annual temperature value, too many values got kicked out.
This error existed probably since version 0.0.15

Version 0.0.29

-add calculation of dropped values in quality check

Version 0.0.28

	MAJOR Error fix: The quality check for T and ET did not consider the decimal multiplier for the limits. So the table 2 from the Method documentation should have looked like this until now, in bold are the numbers that were wrong in the code:

	parameter

	compare equation

	lower limit

	upper limit

	Temperature

	$\(\Delta T = T_{Stat} - \overline{T}_{neighbors}\)

	\(\Delta T < -\mathbf{0.5}°C\)

	\(\Delta T > \mathbf{0.5}°C\)$

	pot. Evapotranspiration

	\(\delta ET = \dfrac{ET_{Stat}}{\overline{ET}_{neighbors}}\)

	\(\begin{cases}\delta ET< \mathbf{20}\% \\ ET_{Stat}> \mathbf{0.2} \frac{mm}{d}\end{cases}\)

	\(\begin{cases}\delta ET> 200\% \\ ET_{Stat}> \mathbf{0.3} \frac{mm}{d}\end{cases}\)

Those limits got corrected to correspond now to:

	parameter

	compare equation

	lower limit

	upper limit

	Temperature

	\(\Delta T = T_{Stat} - \overline{T}_{neighbors}\)

	\(\Delta T < -\mathbf{5}°C\)

	\(\Delta T > \mathbf{5}°C\)

	pot. Evapotranspiration

	\(\delta ET = \dfrac{ET_{Stat}}{\overline{ET}_{neighbors}}\)

	\(\begin{cases}\delta ET< \mathbf{25}\% \\ ET_{Stat}> \mathbf{2} \frac{mm}{d}\end{cases}\)

	\(\begin{cases}\delta ET> 200\% \\ ET_{Stat}> \mathbf{3} \frac{mm}{d}\end{cases}\)

	fixed error that came up in version 0.0.27 for richter correction. The horizon was only calculated from west to south not from north to south.

	correct update_horizon to also consider that the distance between grid cells can be diagonal to the grid, so miultiply with \(\sqrt{2}\)

Version 0.0.27

	fixed major error with update_horizon method. Therefor the Richter Exposition classe changes for many stations. This error existed since Version 0.0.15

	add multiprocess ability to update_richter_class

Version 0.0.26

	fix error with sql statements

	fix logging

Version 0.0.25

version has major problems, use version 0.0.26

	change logging.py submodule name, because of import conflicts with python logging package

Version 0.0.24

	add text wrapper from sqlalchemy to work with sqlalchemy version >2.0

	add compatibility for shapely >2.0

Version 0.0.23

	change pandas to_csv parameter line_terminator to lineterminator, for newer versions

	change logging procedure, to not log to file as a standard way, but only after calling setup_file_logging from logging.py

Version 0.0.22

	add qc_from and qc_until to the meta informations

	fix removal of old log files

Version 0.0.21

	add additional parameter sql_add_where to define a sql where statement to filter the created results in the database

	add postgresql error messages that will cause the execution to wait and restart

	import Station(s)-classes imediatly when module is imported, so now this works

import weatherDB as wdb
wdb.StationsN()

Version 0.0.20

	change secretSettings_weatherDB names to DB_PWD, DB_NAME and DB_USER

	add min and max to the temperature timeseries

Version 0.0.19

	fix error of updating raw_files table after new import.

	change log file name to weatherDB_%host%_%user%.log

	change the use of append method to pandas concat method

	changed pandas method iteritems to items, due to deprecation warning

Version 0.0.18

	correct spelling error “methode” to “method”

	add progressbar to count_holes method

	add para to raw_files db-table, because some files get used for several parameters (T and N_D)

Version 0.0.17

	get_df now also accepts filled_share as kind

	added function to count the holes in the timeseries depending on there length

Version 0.0.16

	repaired the update_raw function of StationND

	change data source from REGNIE to HYRAS for precipitation regionalisation

	add ability to get nearby ma value from rasters, up to 1km from the station

	change day definition for precipitation to run from 5:50 to 5:50 as written in dwd cdc description. (previously it was 5:40 - 5:40, as 5:40 was the last value of the previous day)

	add ability to get all the meta information with get_meta

	save last_imp period but only for df without NAs -> else the marking of last_imp_qc… will not work, as the period will always be smaller than the last_imp period

Version 0.0.15

	change append with pandas concat function. -> faster

	don’t import complete module on installation

Version 0.0.14

	added type test, if parameter gets checked for “all”

	specify that secrets_weatherDB file should be on PYTHONPATH environment variable

	Changed DGM5 to Copernicus DGM25, because of license advantages

	adjusted update_horizon method to be able to work with different CRS

	add kwargs to update_richter_class of StationsN

	fix get_geom with crs transforamation

Version 0.0.13

	change the timezone allocation method of the precipitation download df

	set freq to 10 minutes of precipitation download, to be able to overwrite Values with NAs

	add remove_nas parameter to overwrite new NAs in the database. (mainly for programming changes)

	define the name of the geometry column in get_meta.

Version 0.0.12

	add quality check for precipitation stations: delete values were the aggregated daily sum is more than double of the daily measurement

	when filling up also replace the filled_by column if it got changed

	TimestampPeriod class now also detects string inputs as date

	major error fixed: the coefficients calculation in the fillup method was the wrong way around

	for daily parameters the expand_timeseries_to_period ads now 23:50 to max_tstp_last_imp to get the period

	add vacuum cleanup method in Broker

	check precipitation df_raw for values below 0

	add stids parameter to last_imp methods of stations classes

	add an update method to stations classes, to do a complete update of the stations database data (update_raw + quality_check + fillup + richter_correct)

	only set start_tstp_last_imp values in db if update_raw is done for all the stations

Version 0.0.11

	add fallback on thread if multiprocessing is not working

	cleaning up ftplib use. Always recreate a new instance and don’t try to reuse the instance.
This resolves some problems with the threading of the instances.

	clean raw updates of only recent files by the maximum timestamp of the historical data.

Version 0.0.10

	fixed get_adj compare Timestamp with timezone

Version 0.0.9

	fixed future warning in stations.GroupStations().create_ts

	stations.GroupStations().create_roger_ts fixed

	removed join_how from _check_period as it was not used

	fixed StationND().get_adj, because the StationNBase.get_adj was only for 10 minute resolution

	get_adj always based on “filled” data

Version 0.0.8

	fixed installation (psycopg2 problem and DB_ENG creation)

	fixed importing module when not super user

Version 0.0.7

	convert timezone of downloaded precipitation data, because (before 200 the data is in “MEZ” afterwards in “UTC”)

	update_ma:

	Rasters now also have proj4 code, if necessary. Because the postgis database is not supporting transformation to EPSG:31467

	small speed improvement

	StationCanVirtual._check_meta updated to check separately if station is in meta table and if it has a timeseries table

	Added timezone support. The database timezone is UTC.

Version 0.0.6

	error fixed with is_virtual (!important error!)

	human readable format for the period in log message added

	some spelling errors fixed in documentation

	kwargs added to child methods of get_df (like get_raw…)

	in get_df and consecutive methods:

	filled_share column added if aggregating and filled_by selected

	possibility to download filled_by added

	nas_allowed option added

	add_na_share option added. (give the share of NAs if aggregating)

	in create_ts option to save several kinds added

	get_max_period method

	error in check_stids fixed

	error in ma_update fixed

Version 0.0.5

	The et_et0 parameter gor renamed to r_r0 in the create_ts method

	The r_r0 is now possible to add as pd.Serie or list, when creating a timeserie file

	get_meta method of single stations updated

	get_meta for GroupStation(s) updated

	get_df for GroupStation added

	Quickstart added to the documentation

	documentation has now a TOC tree per class and a method TOC tree on top

	option to skip the check if a station is in the meta file, this is used for computational advantages in the stations classes, because they test already before creating the objects if they are in the meta table.

	…_von and …_bis columns got renamed to the english name …_from and …_until

	the quot_… fields got all normed to % as unit

	dropping stations from meta while updating checks now if stid is in downloaded meta file

Version 0.0.4

	The method part was added to the documentation

	the connection method got updated

Version 0.0.3

This is the first released version

 Python Module Index

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 weatherDB	

 	
 	
 weatherDB.broker	

 	
 	
 weatherDB.lib.max_fun.import_DWD	

 	
 	
 weatherDB.lib.utils	

 	
 	
 weatherDB.station	

 	
 	
 weatherDB.stations	

 Index

Index

 B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

B

 	
 	Broker (class in weatherDB.broker)

C

 	
 	check_is_broker_active() (weatherDB.broker.Broker method)

 	contains() (weatherDB.lib.utils.TimestampPeriod method)

 	copy() (weatherDB.lib.utils.TimestampPeriod method)

 	corr() (weatherDB.station.StationN method)

 	count_holes() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	(weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

 	
 	create_roger_ts() (weatherDB.station.GroupStation method)

 	(weatherDB.stations.GroupStations method)

 	create_ts() (weatherDB.station.GroupStation method)

 	(weatherDB.stations.GroupStations method)

D

 	
 	download_meta() (weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

 	download_raw() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	
 	dwd_id_to_str() (in module weatherDB.lib.max_fun.import_DWD)

E

 	
 	expand_to_timestamp() (weatherDB.lib.utils.TimestampPeriod method)

F

 	
 	fillup() (weatherDB.broker.Broker method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	(weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

G

 	
 	get_adj() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_available_paras() (weatherDB.station.GroupStation method)

 	get_cdc_file_list() (in module weatherDB.lib.utils)

 	get_coef() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_corr() (weatherDB.station.StationN method)

 	get_db_version() (weatherDB.broker.Broker method)

 	get_df() (weatherDB.station.GroupStation method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	(weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

 	get_dist() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_dwd_data() (in module weatherDB.lib.max_fun.import_DWD)

 	get_dwd_file() (in module weatherDB.lib.max_fun.import_DWD)

 	get_dwd_meta() (in module weatherDB.lib.max_fun.import_DWD)

 	get_filled() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_filled_period() (weatherDB.station.GroupStation method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_ftp_file_list() (in module weatherDB.lib.utils)

 	get_geom() (weatherDB.station.GroupStation method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_geom_shp() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_group_stations() (weatherDB.stations.GroupStations method)

 	get_horizon() (weatherDB.station.StationN method)

 	get_interval() (weatherDB.lib.utils.TimestampPeriod method)

 	get_is_broker_active() (weatherDB.broker.Broker method)

 	get_last_imp_period() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_ma() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_max_period() (weatherDB.station.GroupStation method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_meta() (weatherDB.station.GroupStation method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	(weatherDB.stations.GroupStations method)

 	(weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

 	
 	get_meta_explanation() (weatherDB.station.GroupStation class method)

 	(weatherDB.station.StationBase class method)

 	(weatherDB.station.StationCanVirtualBase class method)

 	(weatherDB.station.StationET class method)

 	(weatherDB.station.StationN class method)

 	(weatherDB.station.StationNBase class method)

 	(weatherDB.station.StationT class method)

 	(weatherDB.station.StationTETBase class method)

 	(weatherDB.stations.GroupStations class method)

 	(weatherDB.stations.StationsBase class method)

 	(weatherDB.stations.StationsET class method)

 	(weatherDB.stations.StationsN class method)

 	(weatherDB.stations.StationsND class method)

 	(weatherDB.stations.StationsT class method)

 	(weatherDB.stations.StationsTETBase class method)

 	get_middle() (weatherDB.lib.utils.TimestampPeriod method)

 	get_multi_annual() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_name() (weatherDB.station.GroupStation method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_neighboor_stids() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_para_stations() (weatherDB.stations.GroupStations method)

 	get_period() (weatherDB.lib.utils.TimestampPeriod method)

 	get_period_meta() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_qc() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_qn() (weatherDB.station.StationN method)

 	get_raster_value() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_raw() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	get_richter_class() (weatherDB.station.StationN method)

 	get_setting() (weatherDB.broker.Broker method)

 	get_sql_format_dict() (weatherDB.lib.utils.TimestampPeriod method)

 	get_stations() (weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

 	get_valid_stids() (weatherDB.stations.GroupStations method)

 	get_zipfiles() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	GroupStation (class in weatherDB.station)

 	GroupStations (class in weatherDB.stations)

H

 	
 	has_NaT() (weatherDB.lib.utils.TimestampPeriod method)

 	
 	has_only_NaT() (weatherDB.lib.utils.TimestampPeriod method)

I

 	
 	initiate_db() (weatherDB.broker.Broker method)

 	inside() (weatherDB.lib.utils.TimestampPeriod method)

 	is_empty() (weatherDB.lib.utils.TimestampPeriod method)

 	is_last_imp_done() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	is_real() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	is_virtual() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	
 	isin_db() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	isin_ma() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	isin_meta() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	isin_meta_n() (weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

L

 	
 	last_imp_corr() (weatherDB.broker.Broker method)

 	(weatherDB.station.StationN method)

 	(weatherDB.stations.StationsN method)

 	last_imp_fillup() (weatherDB.broker.Broker method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	(weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

 	last_imp_qc() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	
 	last_imp_quality_check() (weatherDB.broker.Broker method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	(weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

 	last_imp_richter_correct() (weatherDB.station.StationN method)

M

 	
 	
 module

 	weatherDB.broker

 	weatherDB.lib.max_fun.import_DWD

 	weatherDB.lib.utils

 	weatherDB.station

 	weatherDB.stations

P

 	
 	plot() (weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

Q

 	
 	quality_check() (weatherDB.broker.Broker method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	(weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

R

 	
 	richter_correct() (weatherDB.broker.Broker method)

 	(weatherDB.station.StationN method)

 	(weatherDB.stations.StationsN method)

S

 	
 	set_db_version() (weatherDB.broker.Broker method)

 	set_is_broker_active() (weatherDB.broker.Broker method)

 	set_setting() (weatherDB.broker.Broker method)

 	StationBase (class in weatherDB.station)

 	StationCanVirtualBase (class in weatherDB.station)

 	StationET (class in weatherDB.station)

 	StationN (class in weatherDB.station)

 	StationNBase (class in weatherDB.station)

 	
 	StationsBase (class in weatherDB.stations)

 	StationsET (class in weatherDB.stations)

 	StationsN (class in weatherDB.stations)

 	StationsND (class in weatherDB.stations)

 	StationsT (class in weatherDB.stations)

 	StationsTETBase (class in weatherDB.stations)

 	StationT (class in weatherDB.station)

 	StationTETBase (class in weatherDB.station)

 	strftime() (weatherDB.lib.utils.TimestampPeriod method)

T

 	
 	TimestampPeriod (class in weatherDB.lib.utils)

U

 	
 	union() (weatherDB.lib.utils.TimestampPeriod method)

 	update() (weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

 	update_db() (weatherDB.broker.Broker method)

 	update_horizon() (weatherDB.station.StationN method)

 	update_ma() (weatherDB.broker.Broker method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	(weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

 	update_meta() (weatherDB.broker.Broker method)

 	(weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

 	
 	update_period_meta() (weatherDB.broker.Broker method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	(weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

 	update_raw() (weatherDB.broker.Broker method)

 	(weatherDB.station.StationBase method)

 	(weatherDB.station.StationCanVirtualBase method)

 	(weatherDB.station.StationET method)

 	(weatherDB.station.StationN method)

 	(weatherDB.station.StationNBase method)

 	(weatherDB.station.StationT method)

 	(weatherDB.station.StationTETBase method)

 	(weatherDB.stations.StationsBase method)

 	(weatherDB.stations.StationsET method)

 	(weatherDB.stations.StationsN method)

 	(weatherDB.stations.StationsND method)

 	(weatherDB.stations.StationsT method)

 	(weatherDB.stations.StationsTETBase method)

 	update_richter_class() (weatherDB.station.StationN method)

 	(weatherDB.stations.StationsN method)

V

 	
 	vacuum() (weatherDB.broker.Broker method)

W

 	
 	
 weatherDB.broker

 	module

 	
 weatherDB.lib.max_fun.import_DWD

 	module

 	
 weatherDB.lib.utils

 	module

 	
 	
 weatherDB.station

 	module

 	
 weatherDB.stations

 	module

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to WeatherDB’s documentation!

 		
 Introduction

 		
 Install

 		
 Get started

 		
 How-to install python

 		
 Quickstart

 		
 download

 		
 single station

 		
 multiple stations

 		
 create timeseries files

 		
 get meta information

 		
 Method

 		
 downloading the data

 		
 quality check

 		
 Temperature and Evapotranspiration

 		
 Precipitation

 		
 gap filling

 		
 Richter correction

 		
 Sources

 		
 API reference

 		
 weatherDB

 		
 station

 		
 stations

 		
 broker

 		
 Subpackages

 		
 Changelog

 		
 Version 0.0.40

 		
 Version 0.0.39

 		
 Version 0.0.38

 		
 Version 0.0.37

 		
 Version 0.0.36

 		
 Version 0.0.35

 		
 Version 0.0.34

 		
 Version 0.0.33

 		
 Version 0.0.32

 		
 Version 0.0.31

 		
 Version 0.0.30

 		
 Version 0.0.29

 		
 Version 0.0.28

 		
 Version 0.0.27

 		
 Version 0.0.26

 		
 Version 0.0.25

 		
 Version 0.0.24

 		
 Version 0.0.23

 		
 Version 0.0.22

 		
 Version 0.0.21

 		
 Version 0.0.20

 		
 Version 0.0.19

 		
 Version 0.0.18

 		
 Version 0.0.17

 		
 Version 0.0.16

 		
 Version 0.0.15
